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ABSTRACT

Extract local variable is a well-known and widely used refac-

toring. It is frequently employed to replace one or more occurrences

of a complex expression with simple accesses to a newly added

variable. Although most IDEs provide tool support for extract local

variables, such tools without deep analysis of the refactorings may

result in semantic errors. To this end, in this paper, we propose a

novel and more reliable approach, called ValExtractor, to conduct

extract variable refactorings automatically. The major challenge of

automated extract local variable refactorings is how to e�ciently

and accurately identify the side e�ect of the extracted expressions

and the potential interaction between the extracted expressions and

their contexts without time-consuming dynamic execution of the in-

volved programs. To resolve this challenge, ValExtractor leverages a

lightweight static source code analysis to validate the side e�ect of

the selected expression, and to identify which occurrences of the se-

lected expression could be extracted together without changing the

semantics of the program or introducing potential new exceptions.

Our evaluation results on open-source Java applications suggest

that Eclipse and IntelliJ IDEA, the state-of-the-practice refactoring

engines, resulted in a large number of faulty extract variable refac-

torings whereas ValExtractor successfully avoided all such errors.

The proposed approach has been merged into (and distributed with)

Eclipse to improve the safety of extract local variable refactoring.

CCS CONCEPTS

• Software and its engineering→ Softwaremaintenance tools;

Integrated and visual development environments.
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1 INTRODUCTION

The term "software refactoring" was coined by Opdyke [29], refer-

ring to the object-oriented variant of restructuring [1]. In general,

software refactoring could be de�ned as "the process of changing

a [object-oriented] software system in such a way that it does not

alter the external behavior of the code, yet improves its internal struc-

ture" [11]. Recently, software refactoring has been well studied as an

e�cient way to improve software quality [6, 20] as well as an e�ec-

tive way to facilitate software maintenance and evolution [21, 50].

Refactoring tools like JDeodorant [43], ReSharper [32], and built-in

refactoring engines in IDEs (including Eclipse[7], IntelliJ IDEA [16],

NetBeans [27], and Visual Studio [49]) have been widely used to

facilitate software refactoring.

Extract local variable (or extract variable for short) is one of the

most popular refactorings. Notably, dozens of software refactor-

ings have been proposed, ranging from low-level refactorings like

renaming variable to high-level refactorings like teasing apart inher-

itance [11]. By tracking the refactoring histories of programmers,

Murphy-Hill et al. [25] found that extract variable was the second

most popular software refactoring. Extract local variable is to create

a local variable, initialize it with a selected expression, and replace

one or more occurrences of the expression with direct access to the

new variable. The bene�ts of the refactoring are twofold [10]. On

one side, replacing complex expressions with a named variable may

increase the readability of the program because variable names are

often more readable than complex expressions. On the other side,

replacing multiple occurrences of the same expression with simple
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accesses to a variable may avoid repetitive computation and thus

reduce code complexity.

Manually extracting local variables could be tedious, time-consu-

ming and error-prone. It has been well known that changing source

code of complex software systems could be risky [37]. The same is

true for software refactoring [3]. To this end, mainstream IDEs have

provided automated tool support for this refactoring. According to

the survey by Golubev et al. [15], 54.7% of the surveyed developers

use the IDE support to conductExtract refactorings, e.g., extract

variables. The empirical study conducted by Negara et al. [26] sug-

gests that extract variable is frequently performed with automated

tool support. Developers pferm over 80% of extract variable refac-

torings with automated tool support. However, such refactoring

tools often simply replace all expressions that are lexically identical

to the selected one without in-deep analysis on the safety of the

refactoring. As a result, even with such tool support, extracting

local variables could be error-prone, resulting in exceptions and

semantic errors. In Section 2, we explain with motivating exam-

ples why the state-of-the-practice refactoring tools may introduce

semantic errors while extracting local variables.

To this end, in this paper, we propose a novel and more reliable

approach, called ValExtractor , to conduct extract variable refactor-

ings automatically. The major challenge of automated extract local

variable refactorings is how to e�ciently and accurately identify the

side e�ect of the extracted expressions and the potential interaction

between the extracted expressions and their contexts (i.e., state-

ments around them) without time-consuming dynamic execution

of the involved programs. To resolve this challenge, ValExtractor

leverages a lightweight static source code analysis to validate the

side e�ect of the selected expression, and to identify which oc-

currences of the selected expression could be extracted together

without changing the semantics of the program or introducing

potential new exceptions. We evaluated the proposed approach

on open-source applications by applying it and the baseline ap-

proaches (Eclipse and IntelliJ IDEA) to extract expressions in such

applications. Our evaluation results suggested that the state-of-the-

practice baselines did result in hundreds of semantic errors while

conducting extract variable refactorings. Our approach, however,

successfully avoided all such errors. Besides that, we also evaluated

the proposed approach and Eclipse with 253 real-world extract vari-

able refactorings discovered from 10 open-source applications. Our

evaluation results suggested that Eclipse resulted in semantic errors

in 19 out of the 253 cases, and another mainstream IDE IntilliJ IDEA

resulted in semantic errors on all such 19 cases as well. In contrast,

our approach succeeded in conducting all such refactorings without

introducing any semantic errors.

The paper makes the following contributions:

• An automated and more reliable approach to extracting local

variables in Java applications.

• A benchmark consisting of 253 real-world extract local variable

refactorings.

• An evaluation of the proposed approach on the benchmark,

whose replication package, including detailed instruction for

replication, is publicly available [31].

1 private static String parseToken(String pattern , int [] indexRef) {
2 ...
3 if ( pattern == null || pattern.length() > MAX_LEN) {
4 return null ;
5 }
6 while ( i + 1 < pattern.length() ) {
7 ...
8 }
9 ...
10 char lastChar = pattern.charAt ( pattern.length() − 1) ;
11 pattern = "Default_" + pattern ;
12 int j = indexRef [0];
13 while ( j < pattern.length() ) {
14 ...

Listing 1: Motivating Example

2 MOTIVATING EXAMPLE

In this section, we explain with a motivating example the po-

tential risks in extract variable refactorings, and how we min-

imize such risks. The motivating example is presented in List-

ing 1. Suppose that a developer realizes that there are many in-

stances of expression "pattern.length()" in the motivating ex-

ample (as shown in colors), and would like to replace such in-

stances with a local variable. To this end, the developer selects the

expression "pattern.length()" at Line 6 within Eclipse1, right-

clicks it, and selects menu item "refactoring - extract local

variable" as well as the checkbox "replace all occurrences

of the selected expression with references to the local

variable". As a response to the command, Eclipse invokes JDT [8]

to conduct the extract variable refactoring. The resulting source

code is presented in Listing 2. Notably, conducting the same refac-

toring with IntilliJ IDEA would result in the same code.

The refactorings conducted automatically by Eclipse and IDEA

are questionable. By comparing the code before and after the refac-

toring, we notice that Eclipse and IDEA declare a new variable

(length) at Line 3 in Listing 2 and initializes it with the extracted

expression "pattern.length()". It also replaces all of the four in-

stances of the expression with the newly added variable length

at Lines 4, 7, 11, and 14, respectively. However, the replacement

is incorrect and it results in serious bugs that change the seman-

tics of the enclosing software application. First, the newly added

declaration at Line 3 is questionable. In case the input parame-

ter pattern equals null, the declaration would result in a null

pointer exception. In contrast, the source code before refactor-

ing can avoid the exception because it carefully checks whether the

pattern equals null (Line 3 of Listing 1) before the variable is used

to access any of its properties. Second, replacing the expression

"pattern.length()" with variable length at Lines 14 of Listing 2

is incorrect. The variable pattern has been updated at Line 12.

Consequently, at Line 14 the variable length (initialized at Line 3)

is not equivalent to the original expression "pattern.length()".

As a result, replacing the expression with variable length at Line

14 is incorrect, which may result in fewer iterations at Line 14.

To avoid such errors, in this paper, we propose an automated

approach ValExtractor to conduct extract variable refactorings. It

successfully conducts the refactoring as shown in Listing 3 and

avoids all bugs introduced by the state-of-the-practice IDEs (i.e.,

1Do not use version 4.26.0 or later where our approach has been integrated.
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1 private static String parseToken(String pattern , int [] indexRef) {
2 ...
3 int length = pattern.length();
4 if ( pattern == null || length > MAX_LEN) {
5 return null ;
6 }
7 while ( i + 1 < length ) {
8 ...
9 }
10 ...
11 char lastChar = pattern.charAt ( length − 1) ;
12 pattern = "Default_" + pattern ;
13 int j = indexRef [0];
14 while ( j < length ) {
15 ...

Listing 2: After Refactoring(by Eclipse or IDEA)

1 private static String parseToken(String pattern , int [] indexRef) {
2 ...
3 if ( pattern == null || pattern.length() > MAX_LEN) {
4 return null ;
5 }
6 int length = pattern.length();
7 while ( i + 1 < length ) {
8 ...
9 }
10 ...
11 char lastChar = pattern.charAt ( length − 1) ;
12 pattern = "Default_" + pattern ;
13 int j = indexRef [0];
14 while ( j < pattern.length() ) {
15 ...

Listing 3: After Refactoring (by ValExtractor)

Eclipse and IDEA). ValExtractor works as follows. First, given

the selected expression "pattern.length()" at Line 6 in Listing 1,

ValExtractor infers that the new variable declaration should be

added between Line 5 and Line 6 in Listing 1 if the selected ex-

pression alone should be extracted as a new variable. After that,

ValExtractor validates that the variable and the expression (to be

replaced with access to the variable) are equivalent at Line 6, and

the expression itself does not have any side e�ect. Consequently,

the selected expression (at Line 6) is extractable, and it is added as

an extractable expression.

ValExtractor keeps �nding more extractable expressions that

could be extracted together with the selected expression. To this

end, it turns to the expression "pattern.length()" at Line 10 of

Listing 1 because it is the closest expression to the selected expres-

sion at Line 6 and it is literally identical to the selected expression. It

repeats the inference in suggesting where the new variable should

be declared as well as the validation of potential side e�ect as in-

troduced in the preceding paragraph. This time, ValExtractor

suggests that the new variable could be declared between Line 5

and Line 6 in Listing 1 and that replacing both of the expressions

(at Lines 6 and 10) is safe. Consequently, the expression at Line 10

is also added as an extractable expression.

ValExtractor comes to the next expression "pattern.lengt-

h()" at Line 13 of Listing 1. While validating the side e�ect of the

expressions between Line 10 and Line 13, ValExtractor �nds that the

statement at Line 11 has side e�ect on the selected expression (i.e.,

it may change the value of the expression "pattern.length()").

As a result, executing the same expression appearing before and

Selected Expression

Retrieval of 

Candidate 

Expressions

Refactoring Refactored

Project

Candidate 

Expressions

Location

Expression

Validation

Side 
Effect

No

Searching for 

Extractable 

Expressions

Extractable

Expressions

Yes

Extract
able

Yes

No

Figure 1: Overview of ValExtractor

after Line 11 may result in di�erent values, and thus we cannot

extract the expressions at Line 6 (before Line 11) and Line 13 (after

Line 11) together. To this end, ValExtractor discards the expression

at Line 13 as well as other expressions beyond it.

Finally, it reverses the searching direction, and turns to the ex-

pression "pattern.length()" at Line 3. It infers that the new vari-

able should be declared and initialized before Line 3 in Listing 1.

However, the initialization of the new variable with the expression

"pattern.length()" before Line 3 may result in a null pointer

exception (when pattern equals null) that may not happen be-

fore the refactoring. Consequently, ValExtractor discards this ex-

pression as well as other expressions before it (if any).

As a result of the preceding static analysis, ValExtractor ex-

tracts two extractable expressions at Lines 6 and 10 of Listing 1,

avoiding all bugs introduced by Eclipse JDT.

3 APPROACH

3.1 Overview

An overview of the proposed approach (ValExtractor) is pre-

sented in Fig. 1. It takes as input a selected expression and its enclos-

ing project. With such input, ValExtractor validates whether the

selected expression has side e�ect and validates iteratively whether

other literally identical expressions within the same method could

be extracted together. Overall, ValExtractor works as follows:

• Expression validation: It adds the selected expression as a can-

didate expression, and validates whether the selected expression

has side e�ect. If yes, it skips the next step.
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• Retrieval of candidate expressions: It retrieves all expressions

within the enclosing method that are literally identical to the

selected expression, taking them as candidate expressions.

• Search for extractable expressions: It takes a greedy strategy

to search for candidate expressions that could be extracted to-

gether with the selected one (called extractable expressions), and

suggests where the new variable should be declared. If none of

the candidate expressions could be extracted, ValExtractor

terminates and no refactoring would be conducted. Otherwise,

ValExtractor turns to the next step.

• Refactoring: Finally, ValExtractor conducts extract variable

refactoring by declaring and initializing a new variable and

replacing all of the extractable expressions with accesses to

the variable.

Details of the key steps are presented in the following sections,

and the full list of preconditions when a set of literally identical

expressions could be extracted by an extract variable refactoring is

presented as an online appendix [12].

3.2 Expression Validation

The validation of the selected expression is composed of two parts.

The �rst part validates whether the selected expression is suitable

for extraction. Not all expressions could be extracted as local vari-

ables. For example, "this.length" in assignment "this.length=5",

"ArrayList<String>()" in statement "list= new ArrayList<S-

tring>()", and "id.isEmpty()" in statement "st.id.isEmpty()"

cannot be extracted as variables. ValExtractor terminates (i.e., re-

fuses to conduct the refactoring) if the selected expression is one

of the following expressions: parameters, left values, declarations,

single null literal, expressions in annotations, incomplete expres-

sions, void expressions, enumeration expressions in switch cases,

expressions used in initializer or updater of for statements, name

properties, and expressions outside methods.

In the second part, ValExtractor validates whether the selected

expression has side e�ect. An expression has a side effect if exe-

cuting the same expression (one or more times) is not semantically

equivalent to a single execution of the expression. For example, the

expression stack.pop() has side e�ect because repeating it n times

may remove additional n elements from the stack. Consequently,

the following code

Print(stack.pop());

Print(stack.pop());

is not equivalent to the following code:

value=stack.pop()

Print(value);

Print(value);

If the selected expression has side e�ect, we cannot extract it to-

gether with other expressions that are literally identical to it. In

this case, the selected expression is taken as the only candidate ex-

pression, i.e., ValExtractor will extract no more than one expression.

ValExtractor validates the side e�ect of the selected expression

by checking whether the expression has updated states of the sys-

tem, generated outputs, or consumed system inputs. An expression

has updated the states of the system if and only if the expression

(including methods called directly or indirectly by it) has updated

1 InstantConverter conv =
ConverterManager.getInstance() .getInstantConverter ( lhsObj) ;

2 Chronology lhsChrono = conv.getChronology(lhsObj, (Chronology) null ) ;
3 long lhsMillis = conv.getInstantMillis ( lhsObj , lhsChrono);
4 conv = ConverterManager.getInstance() .getInstantConverter (rhsObj) ;
5

6 public static ConverterManager getInstance() {
7 if (INSTANCE == null) {
8 INSTANCE = new ConverterManager();
9 }
10 return INSTANCE;
11 }

Listing 4: Expressions Updating Empty Fields Only

any software entities whose lifetime is beyond the execution of the

selected expression. ValExtractor identi�es generation of outputs

and consumption of system inputs by comparing the executed state-

ments against a list of manually marked Java input/output APIs.

If any of the marked APIs is executed directly or indirectly by the

selected expression, it has side e�ect.

An exception to the preceding rules is that we allow the se-

lected expression to initialize �elds that are initially null. Listing 4

presents a typical example of such initialization. The selected expres-

sion "ConverterManager.getInstance()" is to retrieve the static

�eld manager of class ConverterManager. However, if the variable

equals null (i.e., it has not yet been initialized), the expression

would initialize it with a brand new object (Line 8). Consequently,

although the selected expression has the possibility to update the

�eld manager, repeating the expression multiple times is semanti-

cally equivalent to a single execution of the same expression.

3.3 Retrieval of Candidate Expressions

First, ValExtractor automatically infers the scope of the selected

expression, noted as ScopeExp. The scope of the expression speci�es

where the expression is syntactically accessible. Consequently, the

scope is the intersection of the scopes of all elements involved in the

expression. For example, the scope of the expression "list.add(it-

em)" is the intersection of the scope of the variable "list" and the

scope of the parameter "item".

To retrieve candidate expressions that may be extracted together

with the selected expression, ValExtractor searches for all expres-

sions within ScopeExp that are lexically identical to the selected

expression. For each of the retrieved expressions, ValExtractor also

validates whether it is suitable for extraction in the same way as

it validates the selected expression in Section 3.2. All expressions

passing the validation are added as candidate expressions.

3.4 Searching for Extractable Expressions

For a selected to-be-extracted expression and a sequence of candi-

date expressions, ValExtractor searches for extractable expressions

by Algorithm 1. The output of the algorithm is a suggested loca-

tion for declaring and initializing the new variable (that should

be introduced by extract variable refactoring), and a sequence of

extractable expressions that could be replaced with accesses to the

new variable.

3.4.1 Iteration. On each iteration (Lines 5-16 in Algorithm 1),

ValExtractor validates whether an additional candidate expression
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Algorithm 1: : Searching for Extractable Expressions

Input: B4;�G? ; // selected expression

20=�G?B // candidate expressions

Output: 4GC�G?B ; // extractable expressions

!>20 // location for variable declaration

1 B40A2ℎ�8A = 2

2 4GC�G?B = ∅

3 !>20 = −1

4 2�G? = B4;�G?

5 while 2�G? != null && B40A2ℎ�8A > 0 do

6 4G?B = {2�G?} ∪ 4GC�G?B

7 20=�G?B .remove(2�G?)

8 !>2 = InferBestLoc(4G?B)

9 if ChangeExpValue(!>2 , 4G?B , B4;�G?) OR

AdditionalException(!>2 , 4G?B) then

10 B40A2ℎ�8A = B40A2ℎ�8A - 1

11 else

12 4GC�G?B = 4G?B

13 !>20 = !>2

14 end

15 2�G? = getNext(20=�G?B , 4GC�G?B , B40A2ℎ�8A , B4;�G?)

16 end

2�G? could be extracted together with other extractable expres-

sions in 4GC�G?B . For convenience, we de�ne a new set 4G?B =

{2�G?} ∪ 4GC�G?B at Line 6. The validation is composed of two

steps. On the �rst step (Line 8), ValExtractor infers the best lo-

cation for declaring and initializing the new variables in case all

expressions in 4G?B could be extracted together as a single variable.

On the second step (Line 9), with methods ChangeExpValue and

AdditionalException, ValExtractor validates:

(1) Whether any statements between !>2 (where the new variable

would be initialized) and the expressions in 4G?B (where the

variable would be accessed) would change the value of the

selected expression, i.e., would update any variables that are

read by the expression. Notably, direct and indirect method

invocations are analyzed as well.

(2) Whether the refactoring could result in additional exceptions

that may not be raised before the refactoring.

If either of the validation fails (i.e., returning true), the candidate ex-

pression cannot be extracted together with the selected expression.

Otherwise, the current expression 2�G? is added as an extractable

expression (Lines 6 and 12). Methods InferBestLoc, ChangeExpValue,

and AdditionalException are explained in details in Section 3.4.2 and

Section 3.4.3.

Notably, the algorithm validates the selected expression itself

on the �rst iteration (Line 4 and Lines 5-14). If the selected ex-

pression passes the validation, the algorithm would leverage the

method getNext (Line 15) to retrieve the next candidate expres-

sion in 20=�G?B that may be extracted together with the selected

expression. On each iteration, the algorithm may add an additional

candidate expression to the extractable expressions (Lines 6 and

12). The algorithm �rst searches for extractable expressions by

scanning statements following the selected expression (B4;�G?).

Algorithm 2: :Auxiliary Functions

1 Function InferBestLoc(4G?B):

2 %0A4=C = CommonParentNode(4G?B)

3 if %0A4=C instanceof Block then

4 nodes = Parent.getChildren();

5 for (8 = 0; 8 < =>34B.B8I4 ; 8++) do

6 if nodes[i].contain(4G?B) then

7 !>2 = StmtBasedLoc(=>34B [8] .!>2)

8 break

9 end

10 end

11 else

12 !>2 = StmtBasedLoc(%0A4=C .Loc)

13 end

14 return !>2

15 Function ChangeExpValue(!>2 , 4G?B , B4;�G?):

16 E0AB_A_4G? = VariablesReadby(B4;�G?)

17 BCB = StatementsWithinScope(!>2 , 4G?B)

18 for each BC0C4<4=C in BCB do

19 E0AB_F_BC = VariablesWrittenby(BC0C4<4=C )

20 if E0AB_F_BC ∩ E0AB_A_4G? != ∅ then

21 return true

22 end

23 end

24 return false

25 Function AdditionalException(!>2 , 4G?B):

26 for each 4G? in 4G?B do

27 #23B = #D;;�ℎ42:�>=38C8>=B(;>2 , 4G?)

28 #8=B = #23B.�ℎ42:43�=BC0=24B ∩

4G?.�224BB43�=BC0=24B

29 )23B = )~?4�ℎ42:�>=38C8>=B(;>2 , 4G?)

30 )8=B = )23B.�ℎ42:43�=BC0=24B ∩

4G?.)~?4�0BC43�=BC0=24B

31 if #8=B ≠ ∅ OR )8=B ≠ ∅ then

32 return true

33 end

34 end

35 return false

After that, it reverts the searching direction and scans statements

before the selected expression. It leverages the �ag "searchDir" to

control the searching direction. If "searchDir==2", getNext would

return the candidate expression in 20=�G?B that is 1) not included in

4GC�G?B and 2) appears in the source code �le after all expressions

in 4GC�G?B but before other expressions in 20=�G?B (candidate ex-

pressions). If "searchDir==1", getNext would reverse the search

direction: returning the candidate expression that appears in the

source code �le before all expressions in 4GC�G?B but after other ex-

pressions in 20=�G?B . When "searchDir==0" is true, the algorithm

stops searching for more extractable expressions.
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3.4.2 Inferring the Best Location for Variable Declaration. The func-

tion InferBestLoc in Algorithm 2 shows how to infer the best lo-

cation for variable declaration. ValExtractor leverages the AST of

the enclosing method to �nd the lowest common parent node for

all of the expressions in 4G?B (Line 2). If the parent node is not a

block [2], ValExtractor suggests inserting the variable declaration

immediately before the parent node (Line 12). Otherwise, ValExtrac-

tor suggests inserting the declaration as a child node of the parent

node (block) and this child node should be de�ned just before the

�rst child node of the block that contains any expressions in 4G?B

(Lines 4-10). Notably, we leverage the method StmtBasedLoc (Lines

7 and 12) to avoid inserting the variable declaration within an ex-

isting statement. It automatically returns the �rst place where a

variable declaration could be inserted before the given absolute

location.

3.4.3 Checking Preconditions. ValExtractor employs two functions

ChangeExpValue and AdditionalException in Algorithm 2 to check

preconditions for the refactoring. Function ChangeExpValue vali-

dates whether any statement between !>2 (where the new variable

would be initialized) and the expressions in 4G?B (where the vari-

able would be accessed) would change the value of the selected

expression. If yes, extracting all expressions in 4G?B together could

result in semantic errors, and thus the current expression 2�G? is

discarded for safety (Lines 9-10 in Algorithm 1). ChangeExpValue

identi�es all variables that are accessed by the selected expres-

sion (Line 16). All statements between !>2 and the expressions

in 4G?B are retrieved and noted as BCB (Line 17). For each of the

statements in BCB , ValExtractor validates whether it updates any

element that has been read by the selected expression (Lines 20-22).

If yes, ChangeExpValue terminates the validation and returns true

(i.e., the precondition is not satis�ed).

Besides the variable access-based precondition checking, ValEx-

tractor also leverages function AdditionalException to conduct an

exception-based precondition checking (Lines 25-35). It is likely

that the execution of the same expression in some places would

result in exceptions whereas the execution in other places would

not result in such exceptions. A typical example is presented in

Listing 2. The same expression "pattern.length()" at Line 3 may

result in a null pointer exception whereas the same expression at

Line 4 (before it is replaced by variable length) will not. The latter

avoids the null pointer exception because of the preceding con-

dition ("pattern==null"): if pattern equals null, the expression

at Line 4 would not be executed, which avoids the null pointer

exception. Consequently, extracting the expression at Line 4 as a

new variable (at Line 2) as presented in Listing 2 may result in

additional exceptions, which is called exception-based side e�ect.

Of the current version, we focus on null pointer exceptions and

class cast exceptions only, and thus we only check 1) whether any

instances accessed by the selected expression have been checked

against null (Lines 27, 28, 31), and 2) whether any instances type-

casted by the selected expression have been checked against the

given types (Lines 29, 30, 31).

3.5 Refactoring

Suppose that ValExtractor identi�es a sequence of extractable ex-

pressions (4GC�G?B) and suggests declaring the new variable on

1 // Before Refactoring
2 for (Good g: goodlist )
3 if ( g.getPrice() > 0)
4 sum += g.getPrice() ∗ discount ;
5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6 // After Extract Variable Refactoring
7 for (Good g: goodlist ) {
8 double price = g.getPrice();
9 if ( price > 0)
10 sum += price ∗ discount ;
11 }

Listing 5: Inserting into Single-Statement For-Iteration

location !>20, ValExtractor would conduct the suggested extract

variable refactoring as follows.

• First, ValExtractor infers the data type of the new variable by

exploiting TypeBinding of JDT [17].

• Second, ValExtractor inserts the declaration of the new vari-

able and initializes it with the selected expression on loca-

tion !>20. If it is inserted into a single-statement complex

structural node, like if-else-statement, while-iteration,

lambda-statement, and for-iteration, ValExtractor would

insert "{" and "}" to mark the whole code block. A typical ex-

ample is presented in Listing 5. Without the newly inserted

"{" at Line 7 and "}" at Line 11, the if-statement (Lines 9-10)

would be moved out of the for-statement, which would re-

sult in semantic errors because the if-statement constitutes the

body of the for-statement in the original code.

• Finally, ValExtractor replaces all extractable expressions in

4GC�G?B with direct access to the new variable. Notebly, we

leverages the API provided by JDT to recommend variable

name based on the selected expression and its expected type.

4 EVALUATION

4.1 Research Questions

The evaluation investigates the following research questions:

• RQ1: Does ValExtractor improve the state of the practice in

automating extract variable refactorings?

• RQ2:Why do Eclipse and IDEA result in faulty extract variable

refactorings and how does ValExtractor avoid such errors?

• RQ3: Does ValExtractor outperform the state of the art in

precondition checking for extract local variable refactorings?

RQ1 concerns the comparison among ValExtractor, Eclipse, and

IntelliJ IDEA. Eclipse (version 4.23.0 released in 2022) and IDEA

(2022-03 release) were selected for comparison because they rep-

resent the state of the practice, and they are widely used in the

industry. Notably, we did not employ the latest version of Eclipse

because the proposed approach has been integrated into Eclipse

since version 4.26.0. RQ2 concerns the reasons/mechanism for intro-

ducing/avoiding errors in automated extract variable refactorings.

RQ3 concerns the precondition checking of extract local variable

refactorings. To answer RQ3, we compare ValExtractor against

JRRT [35] that represents the state of the art in precondition check-

ing for software refactorings. Notably, while investigating RQ1, we

do not compare ValExtractor against JRRT because JRRT has its

special strategy: It always extracts the selected expression only (not

with any other lexically identical expressions) [35]. It is completely
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di�erent from ValExtractor, Eclipse and IDEA, making it hard to

compare them directly concerning the overall performance.

4.2 Subject Applications

We leveraged all applications in the well-known bug repository

Defects4J [5](version 1.1.0) for the evaluation. In total, Defects4J

contains 6 Java applications, as speci�ed in the �rst column of

Table 1. The size (LOC) of the applications varied from 61,298 to

230,135. We reused such applications because we were familiar with

this repository, which might facilitate manual validation/analysis of

the evaluation results. Besides that, the applications are widely used

open-source applications from di�erent domains, which might help

reduce potential bias and facilitate replication of the evaluation.

4.3 Process

On each subject application, the evaluation was conducted as fol-

lows. First, we retrieved all expressions that appeared multiple

times within the same method. Each of the retrieved expressions

could be represented 4G?8 =< CGC, !>2B > where CGC is the text

of the expression whereas !>2B is a sequence of locations where

the expression appears. Notably, expressions (e.g., expression "a.b"

in statement "a.b=4") that Eclipse JDT refuses to extract had been

excluded. We leveraged the APIs of JDT to automate the exclusion.

Second, for each expression 4G?8 , we randomly selected one of its

occurrences as the selected expression and fed this selected expres-

sion to the evaluated approaches (ValExtractor, Eclipse, and IDEA)

to conduct extract variable refactoring. If the approaches generated

di�erent outputs, we marked the refactorings as a triple of incon-

sistent refactorings. Third, from the resulting triples of inconsistent

refactorings, we randomly sampled = triples for manual checking.

The size of the sample (i.e., =) guarantees an error margin of 5%

and a con�dence level of 95% [34]. We also sampled< triples of

consistent refactorings in the same way. Finally, three highly expe-

rienced developers with over three years of Java expertise manually

checked the sampled triples of inconsistent/consistent refactorings.

They discussed together and classi�ed the refactorings as one of

the followings:

• Buggy: The refactoring was incorrect because it introduced

semantic errors.

• Correct: The refactoring was conducted correctly.

• Imperfect: The refactoring did not introduce any semantic

errors, but it missed some extractable expressions.

4.4 RQ1: Improving the State of the Practice

The evaluation results are presented in Table 1. #Cases in Ta-

ble 1 speci�es how many cases have been used for the evalua-

tion, i.e., how many times the proposed approach (and the baseline

approaches) have been applied to extract variables. #Consistent

speci�es how many times the evaluated approaches resulted in

identical results. #Inconsistent speci�es how many times they

resulted in di�erent (inconsistent) refactorings.

From Table 1, we make the following observations:

• First, more than 11 thousand cases have been involved in the

evaluation. Such a large number of cases enables a thorough

evaluation of the approaches.

Table 1: Evaluation Results

Applications #Cases #Consistent #Inconsistent

Closure 2,465 1,957 508

Jfreechart 3,831 3,292 539

Joda 510 335 175

Lang 565 388 177

Math 3,516 3,084 432

Mockito 135 118 17

Total 11,022 9,174 1,848

• Second, the evaluated approaches frequently resulted in inconsis-

tent refactorings. The inconsistent cases account for 16.8%=1,8-

48/11,022 of the evolved cases. Such a non-trivial ratio of incon-

sistent cases may suggest that extract variables automatically is

error-prone, which further motivates the research presented in

this paper.

• Third, on all of the six subjection applications, the three ap-

proaches reported inconsistent cases.

According to the process introduced in Section 4.3, we ran-

domly sampled 318 inconsistent cases and 369 consistent cases,

and requested three developers to manually check the samples.

The evaluation results suggested that all refactorings on the 369

consistent cases were correct. The manual checking results on in-

consistent cases are presented in Table 2. The columns "#correct",

"#imperfect" and "#buggy" present the numbers of correct, im-

perfect, and buggy extract variable refactorings conducted by the

evaluated approaches, respectively. From this table, we make the

following observations:

• Eclipse resulted in a large number of buggy extract variable

refactorings. On 243 out of the 318 inconsistent cases, Eclipse

resulted in buggy refactorings. It resulted in errors on all of the

evaluated applications.

• IDEA resulted in the largest number (263) of faulty refactorings in

the sampled 318 inconsistent cases. IDEA and Eclipse frequently

failed on the same cases. On 233 out of the 318 cases, both IDEA

and Eclipse resulted in errors.

• ValExtractor avoided all of the bugs introduced by Eclipse or

IDEA. It did not result in any faulty refactorings.

• All of the evaluated approaches resulted in imperfect extract

variable refactorings, i.e., missing some extractable expressions.

The major reason for such imperfect refactorings is that they

employ conservative tactics to avoid errors, and thus any poten-

tially unsafe expressions would be ignored. We also notice that

ValExtractor reported more imperfect refactorings than Eclipse

and IDEA because it pays more attention to safety and thus its

tactic is more conservative.

We also assessed the e�ciency of ValExtractor. On a personal

computer with 8 GB memory and Intel i7-8550U CPU, 91.6% of

the refactorings were �nished by ValExtractor within 2 seconds,

96.5% within 5 seconds, and 98.3% within 10 seconds. The median

execution time for a single refactoring was 0.20 seconds, compara-

ble to that (0.13 seconds) of Eclipse. The maximal execution time

(390 seconds) is substantially larger than that (1 second) of Eclipse.

ValExtractor is more time-consuming because it leverages more

complex code analysis to detect potential errors. To reduce the max-

imal time, we may present a maximal time slot. When ValExtractor

319



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Xiaye Chi, Hui Liu, Guangjie Li, Weixiao Wang, Yunni Xia, Yanjie Jiang, Yuxia Zhang, and Weixing Ji

Table 2: Inconsistent Refactorings

Applications
ValExtractor Eclipse Intellij IDEA

#Correct #Imperfect #Buggy #Correct #Imperfect #Buggy #Correct #Imperfect #Buggy

Closure 83 4 0 23 1 63 14 0 73

Jfreechart 93 4 0 28 1 68 25 0 72

Joda 29 1 0 3 0 27 2 0 28

Lang 25 3 0 8 2 18 6 1 21

Math 70 2 0 8 1 63 7 0 65

Mockito 4 0 0 0 0 4 0 0 4

Total 304 14 0 70 5 243 54 1 263

Table 3: Reasons for Buggy Refactorings

Applications
Exception in

Initialization

Changed

Values

Side

E�ect

Closure 18(23.7%) 30(39.5%) 28(36.8%)

Jfreechart 5(6.5%) 29(37.7%) 43(55.8%)

Joda 5(18.5%) 14(51.9%) 8(29.6%)

Lang 7(29.2%) 10(41.7%) 7(29.2%)

Math 9(13.8%) 33(50.8%) 23(35.4%)

Mockito 2(50.0%) 2(50.0%) 0(0.0%)

Total 46(16.8%) 118(43.2%) 109(39.9%)

1 public void predict ( �nal RealVector u)
2 throws DimensionMismatchException {
3 ...
4 int var_948 = u.getDimension();
5 if (u != null &&
6 u.getDimension() var_948 != controlMatrix.getColumnDimension()) {
7 throw new DimensionMismatchException(u.getDimension() var_948,
8 controlMatrix.getColumnDimension()) ;
9 }
10 }

Listing 6: Faulty Refactoring (Exceptions in Initialization)

runs out of the slot, it stops searching for additional extractable

expressions, and extracts all extractable expressions at hand. Note

that such a strategy does not increase the risk of faulty refactorings.

We conclude that extract variable refactoring is error-prone

even with the state-of-the-practice refactoring tools. ValExtractor

is much more reliable than the widely used Eclipse and IDEA.

4.5 RQ2: Reasons for Faulty Refactorings

According to the errors introduced by such refactorings, We col-

lected faulty extract variable refactorings conducted by IDEA and/or

Eclipse, resulting in a total of 273 cases, and classi�ed them into

three categories. The results of the classi�cation are presented in Ta-

ble 3. On this table, the numbers outside parenthesis are the absolute

numbers of buggy refactorings falling into given categories. The

percentage in parenthesis equals to the absolute number divided

by the total number of buggy refactorings on the given application.

The category "exception in initialization" refers to such

refactorings where the initialization of the new variables may re-

sult in exceptions that may not be raised before the refactorings. A

typical example is presented in Listing 6. The example code comes

from the open-source project Math. Eclipse extracted the expression

"u.getDimension()" at Line 6 and Line 7 as a new variable and initial-

ized it at Line 4. However, the initialization might raise null pointer

exceptions when u equals null. In contrast, even if u equals null,

the source code before refactoring can avoid the exception because

1 private RuleSet getLastRuleSet () {
2 int var_656 = iRuleSets.size();
3 if ( iRuleSets.size() var_656 == 0) {
4 addCutover(Integer.MIN_VALUE, ... 0) ;
5 }
6 return iRuleSets.get ( iRuleSets.size() var_656 − 1) ;
7 }
8 public DateTimeZoneBuilder addCutover(int year , ... , int millisOfDay) {
9 if ( iRuleSets.size () > 0) {
10 ...
11 }
12 iRuleSets.add (new RuleSet() ) ;
13 return this ;
14 }

Listing 7: Faulty Refactoring (Changed Values)

it leverages the condition "u!=null" at Line 5 to avoid the execution

of the expression "u.getDimension()" in case u equals null. ValEx-

tractor avoided this error by extracting only the second occurrence

of the expression (Line 7) and initializing the new variable within

the body of the if statement. As shown in Table 3, 16.8% of the faulty

extract variable refactorings conducted by Eclipse/IDEA fall into

this category.

The second category, "changed values", refers to extract vari-

able refactorings where the expressions replaced with the same

variable have di�erent values although they are literally identi-

cal. Listing 7 presents a real-world example conducted by Eclipse

and Idea on project Joda. Eclipse extracted the expression "iRule-

Sets.size()" at Line 3 and 6 as a new variable var_656 and initialized

the new variable at Line 2. However, the method invocation at Line

4 would change the set iRuleSets, and thus would change the

size of the set. As a result, at Line 6, the original expression "iRule-

Sets.size()" is not equal to the value of var_656 that is initialized at

Line 2. As a result, replacing the expression with the variable at Line

6 as Eclipse did result in semantic errors. ValExtractor avoided this

error by replacing the �rst expression at Line 3 only. The precon-

ditions in Section 3.4.3 successfully prevented ValExtractor from

extracting the expression at Line 6 together with the selected one

(Line 3). Notably, such kind of errors is hard to �nd because they do

not raise any exceptions or warning. However, as suggested in Ta-

ble 3, around half the faulty extract variable refactorings conducted

by Eclipse and IDEA would result in such kind of hard-to-detect

errors. It may suggest how dangerous extract variable refactorings

could be.

The last category, "side effect", refers to such extract variable

refactorings where execution of the selected expressions has side

e�ect, i.e., executing multiple times the same expression is not

semantically equivalent to a single execution of the same expression.
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1 private String format( JSError error , boolean warning) {
2 SourceExcerptProvider source = getSource () ;
3 int var_333 = error.lineNumber;
4 String sourceExcerpt = source == null ? null :
5 excerpt.get (source , error.sourceName,
6 error.lineNumber var_333 , excerptFormatter ) ;
7 ...
8 }

Listing 8: Safe Refactoring Rejected by JRRT

For space limitation, we present a typical example of this category

online [28]. Note that the selected expression in this example is

a method invocation parseEscapeChar() that retrieves a char from

�eld pattern. It has side e�ect because the method returns di�erent

char on each invocation: The method moves a pointer on each

invocation so that each char in pattern is read once and for all.

ValExtractor identi�es the side e�ect with the validation of selected

expressions as introduced in Section 3.2.

we conclude that extract variable refactorings may result in

various categories of errors, and ValExtractor avoided them.

4.6 RQ3: Comparing against JRRT

To compare ValExtractor against JRRT concerning their perfor-

mance in precondition checking, we applied both ValExtractor and

JRRT to the 11,022 expressions that had been randomly selected in

Section 4.3. Their checking results were inconsistent if and only

if one agreed to extract the selected expression whereas the other

rejected it. In total, for 2,273 out of the 11,022 expressions, they

led to inconsistent results. We randomly sampled 329 inconsistent

cases and 368 consistent cases for manual checking. The sizes of the

samples guaranteed an error margin of 5% and a con�dence level of

95% [34]. We requested the same participants in Section 4.3 to man-

ually validate whether the selected expressions could be extracted

(as local variables) safely. The evaluation results suggested that both

of them were correct in all of the 368 consistent cases. However,

JRRT made incorrect decisions on all of the 329 inconsistent cases.

On 317 out of the 329 inconsistent cases, JRRT suggested not to

refactor whereas ValExtractor suggested that the refactorings were

safe. Manual checking suggested that all of the 317 refactorings

suggested by ValExtractor (but forbidden by JRRT) were safe and

correct. A typical example is presented in Listing 8. JRRT suggested

not to refactor because the refactoring may "unlock dependencies"

that means JRRT mistakenly assumes that the refactoring may

break existing dependencies in program and potentially result in

errors or unpredictable behavior. However, the extract refactoring

(in Listing 8) suggested by ValExtractor is safe and correct.

On 12 out of the 329 inconsistent cases, JRRT suggested refac-

toring whereas ValExtractor suggested not refactoring. Manual

checking con�rmed that all of the 12 refactoirngs suggested by

JRRT were faulty. A typical example is presented in Listing 9. The

refactoring suggested by JRRT as shown in Listing 9 may result in

null pointer exception if info equals null. ValExtractor rejected the

refactoring because it realized the potential exception caused by

the refactoring.

1 public ImmutableList<String> getTemplateTypeNames() {
2 ImmutableList<String> var_2522 = info.templateTypeNames;
3 if ( info == null || info.templateTypeNames var_2522 == null ) {
4 return ImmutableList.of () ;
5 }
6 return info.templateTypeNames;
7 }

Listing 9: Faulty Refactoring Suggested by JRRT

5 CASE STUDY

In the preceding section, we evaluated ValExtractor by randomly

applying it to expressions in real-world open-source applications.

However, such randomly selected refactorings could be di�erent

fromwhat developers did in the industry. To this end, in this section,

we further evaluated ValExtractor with real-world extract variable

refactorings that had been actually conducted by developers on

open-source applications.

5.1 Subject Applications

To collect a large number of real-world extract variable refactorings,

we should select such applications with rich evolution histories.

To this end, we selected subject applications collected by the well-

known bug repository GrowingBugs [18]. GrowingBugs contains

more than one thousand bugs automatically discovered from the

evolution histories of open-source applications. In total, it involves

80 well-known open-source applications from di�erent domains,

and such applications are developed and maintained by di�erent

teams. All of the applications contain rich evolution histories, which

makes them suitable for discovering extract variable refactorings.

5.2 Process

To discover extract variable refactorings that have been conducted

by the original developers, we applied RefactoringMiner [46] to

the evolution histories of the selected applications. Refactoring-

Miner was selected because it represents the state of the art in

discovering refactoring activities. Notably, we ignored all refactor-

ings except for extract local variable refactorings. Besides, we also

ignored the following extract local variable refactorings:

• Extract variable refactorings where the new variables are not

initialized on their declaration. The proposed approach (and

the baseline approach) are doomed to initialize the new vari-

ables introduced by extract variable refactorings, which may

con�ict with the discovered refactorings.

• Extract variable refactorings where the selected expressions

are composed of constants only. In this case, ValExtractor is

always equivalent to the baseline approaches, and thus there

is no need to compare them based on such refactorings.

For each of the collected refactorings, we tried to re-apply the

refactoring with the evaluated approaches independently. Notably,

RefactoringMiner cannot tell us which expression had been selected

when the discovered refactoring was conducted manually by the de-

velopers. To this end, we randomly selected one of the extracted ex-

pressions to invoke the evaluated approaches. In case a refactoring

conducted by the evaluated approaches was identical to the discov-

ered one, the refactoring was classi�ed as #correct. Otherwise, we

requested three developers tomanually check the refactoring (noted
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Table 4: Comparison against Real-World Extract Variable Refactorings

Applications
ValExtractor Eclipse Intellij IDEA

#Correct #Imperfect #Buggy #Correct #Imperfect #Buggy #Correct #Imperfect #Buggy

Codec 12 0 0 10 0 2 10 0 2

Compress 37 0 0 35 0 2 35 0 2

Jackrabbit 54 0 0 53 0 1 53 0 1

Joda 4 0 0 2 0 2 2 0 2

Johnzon 7 0 0 6 0 1 6 0 1

Jsoup 4 0 0 3 0 1 3 0 1

Math 72 0 0 71 0 1 71 0 1

Ni� 32 0 0 27 0 5 27 0 5

Storm 8 0 0 7 0 1 7 0 1

Tinkerpop 23 0 0 21 0 2 21 0 2

Total 253 0 0 234 0 19 234 0 19

1 public void luDecompose() throws InvalidMatrixException {
2 ...
3 for ( int row = 0; row < col ; row++) {
4 BigDecimal[] luRow = lu[row];
5 sum = luRow lu[row][col ];
6 for ( int i = 0; i < row; i++)
7 sum = sum.subtract ( luRow lu[row][ i ] .multiply ( lu[ i ][ col ]) ) ;
8 luRow lu[row][col ] = sum;
9 }
10 ...
11 for ( int row = col ; row < nRows; row++) {
12 BigDecimal[] luRow = lu[row];
13 sum = lu[row][col ];
14 for ( int i = 0; i < col ; i++)
15 sum = sum.subtract ( luRow lu[row][ i ] .multiply ( lu[ i ][ col ]) ) ;
16 luRow lu[row][col ] = sum;
17 ...
18 }

Listing 10: Incorrect Ground Truth

as potential faulty refactoring) against the ground truth (i.e., the

discovered refactoring). The manual checking may result in three

di�erent conclusions: Buggy refactorings, imperfect refactorings, or

incorrect ground truth. In case of incorrect ground truth (generated

automatically by RefactoringMiner), the developers manually �xed

the ground truth and re-evaluated the approaches with the �xed

ground truth. In total, we found and �xed 85 incorrect ground truth.

Listing 10 is an example of incorrect ground truth. The extract

variable refactoring at Lines 4-8 is independent of that at Lines 12-

16 although they are highly similar. However, RefactoringMiner

reported the two independent refactorings as a single refactoring

by mistake.

The three participants had rich experience in software devel-

opment and software refactoring. They collaborated together and

discussed to reach agreements on all of the cases. To minimize the

cost of the manual checking, we only checked the top 10 applica-

tions with the most potential faulty refactorings (i.e., refactorings

that were di�erent from the ground truth).

5.3 Results

In total, 253 real-world extract variable refactorings were employed

for the evaluation whose results are presented in Table 4. From the

table, we make a series of observations.

First, Eclipse (and IDEA) resulted in semantic errors on 19 out of

the 253 cases, with an error rate of 7.5%=19/253. Note that Eclipse

and IDEA failed on exactly the same cases, and thus in Table 4

Columns 5-7 are exactly the same as Columns 8-10. We also observe

that they resulted in errors on all of the 10 subject applications.

Second, we observe that ValExtractor did not result in any se-

mantic errors. It succeeded in all of the 253 cases without missing

any extractable expressions or introducing any semantic errors. It

may suggest that ValExtractor is much more reliable than Eclipse

and IDEA in extracting variables.

Finally, we observe from the table that none of the evaluated

approaches resulted in any imperfect extract variable refactorings

where some extractable expressions were missed. It is di�erent

from what we found in the random evaluation in Section 4 where

all of the evaluated approaches resulted in dozens of imperfect

refactorings. One possible reason is that refactorings conducted by

developers in the industry could be essentially di�erent from ran-

domly constructed refactorings. Another possible reason is that the

number of refactorings involved in this case study is substantially

smaller than that involved in Section 4. Besides that, in practice,

developers have unit tests that may prevent faulty refactorings

from being committed to repositories.

Based on the preceding analysis, we conclude that developers

have a non-negligible possibility to introduce semantic errors in

conducting extract variable refactorings even equipped with the

state-of-the-practice refactoring tools. The proposed approach, how-

ever, can successfully avoid such errors.

5.4 Threats to Validity

A threat to external validity is that only a limited number (253)

of real-world refactorings were used for the case study. Because

building the benchmark involved intensive human intervention,

it is hard to enlarge the benchmark. To reduce the threat, we also

leveraged more than ten thousand randomly sampled refactoring

opportunities in Section 4 for the evaluation.

A threat to construct validity is that the requested manual check-

ing could be inaccurate. In both the evaluation in Section 4 and

the case study in Section 5, manual checking served as the ground

truth for the evaluation. However, manual checking could be inac-

curate, which might in turn result in an inaccurate measure of the

performance of the evaluated approaches. To reduce the threat, we

requested multiple participants to check the refactorings, and they

reached agreements on all of the cases.
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6 DISCUSSIONS

It remains challenging to determine the side e�ect of APIs whose

source code is not available. In this paper, we only analyze the APIs

in Java 8 standard library, resulting in a list of methods marked as

"may result in side e�ect". ValExtractor compares method invo-

cations against the list to identify wether the method invocations

have side e�ect. However, such approach may not work for non-

Java APIs, local system classes or third-party library classes. In

future, we should investigate generic solution for such cases, and

the slicing-based approach proposed by Tsantalis and Chatzige-

orgiou [45] could be promising. We also notice that the proposed

approach depends on type biding provided by Eclipse, and thus

if the source code cannot be parsed by Eclipse (e.g., because of

incompleteness), it may fail to recognize method invocations.

The proposed approach conducts static analysis to identify po-

tential exceptions caused by extract local variable refactorings. The

feature is highly desirable because additional exceptions may result

in crash of the software systems. However, the current implementa-

tion of the proposed approach covers only null pointer exceptions

and class cast exceptions. In future, we should cover additional

exceptions such as arithmetic exceptions.

Recommending a name for the newly introduced variable is an

indispensable part of extract local variable refactoring. However,

the proposed approach simply reuses the implementation of Eclipse

JDT. In future, we would like to improve the accuracy in name

recommendation for extract local variable refactorings.

7 RELATED WORK

7.1 Improving Reliability of Refactorings

Software refactoring, as well as other changes on complex soft-

ware applications, is often error-prone. Consequently, researchers

have proposed approaches to reduce, avoid, or detect errors intro-

duced by refactorings. For example, to improve the reliability of

generalization-related refactorings, Tip et al. [41, 42] leveraged type

constraints to verify the preconditions of refactorings, and to deter-

mine safe editions of source code. Schäfer et al. [36] and Jonge et

al. [4] focused on the reliability of the most widely used refactoring,

renaming software entities. The key of their approaches is to create

symbolic names that are bound to the renamed software entities

by inverting the lookup function of compilers (or by reusing the

name analysis provided by compilers), which helps avoid updating

(by mistake) references to untouched software entities. Researchers

have also provided static analysis-based approaches to improve

the reliability of other types of refactorings, including memoriza-

tion refactorings [51], merging of duplicated code [47], asynchrony

refactorings [13, 22], and refactoring for parallelization [19].

As a generic mechanism to improve the reliability of refactorings,

preconditions have been widely used to prevent unsafe refactor-

ings [33]. For example, Opdyke [29], one of the best-known pioneers

in software refactoring, speci�ed preconditions for various types of

refactorings. Tsantalis et al. [44] speci�ed preconditions for move

method refactorings. Ubayashi et al. [48] proposed refactoring by

contract to verify refactorings based on contracts that are com-

posed of preconditions, postconditions, and invariants described

in Contract Writing Language (COW) [38]. Overbey et al. [30] pro-

pose di�erential precondition checking to verify preconditions of

refactorings. Refactoring Browser [33] is one of the premiere refac-

toring tools that support preconditions of refactorings. JRRT [35]

is a refactoring engine for JastAddJ. It is well-known for its unique

safety checking for software refactorings.

7.2 Detecting Faulty Refactorings

Detecting faulty refactorings is an important and practical way

to minimize the risk of software refactorings. Soares et al. [40]

proposed SafeRefactor that checks for compilation errors in the

refactored version �rst and then generates unit tests for both ver-

sions. If any unit test results in con�icting results before and after

the refactorings, errors are reported. SafeRefactorImpact, pro-

posed by Mongiovi [24], improves SafeRefactor by focusing on

only such methods that are impacted by the refactorings. Soares

et al. [39] and Melina Mongiovi et al. [23] proposed techniques to

identify overly weak (semantic errors) and overly strong conditions

(imperfect transformations) in refactoring implementations using

SafeRefactor. They identi�ed a number of faulty or imperfect refac-

torings in Eclipse, NetBeans and other refactoring engines. Gligoric

et al. [14] proposed an approach to testing refactoring engines. Us-

ing real programs as input, they identi�ed a number of compilation

errors caused by refactoring engines of IDEs.

To identify faulty extract variable refactorings, Eilertsen et al. [9]

proposed an assertion-based approach. It inserts assertions into

refactored programs to validate whether the replaced expressions

are equivalent to the variables (that are used to replace the expres-

sions) at the location where the expressions are. Our approach is

complementary to theirs in that we prevent unsafe extract variable

refactorings whereas they detect faulty refactorings.

8 CONCLUSIONS AND FUTUREWORK

Extract local variable is one of the most popular refactorings. How-

ever, manual refactoring is both time-consuming and error-prone.

To this end, in this paper, we propose a novel approach ValExtrac-

tor to conduct extract local variable refactorings automatically and

safely. Our evaluation results on open-source applications suggest

that automated extract variable refactorings could be risky, and

the state-of-the-practice refactoring tools (both Eclipse and IntelliJ

IDEA) did result in a large number of faulty extract variable refac-

torings that introduced semantic errors. In contrast, ValExtractor

successfully avoided all such errors. Our bug reports to Eclipse com-

munity have been con�rmed and the pull requests implementing

our approach have been approved and merged into Eclipse.

It is potentially fruitful to adapt the proposed approach to other

programming languages besides Java. It is also practical to paral-

lelize ValExtractor, especially the search algorithm in Algorithm 1

for further speedup.

9 DATA AVAILABILITY

The replication package is publicly available [31].
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