
Context-Aware Name Recommendation for Field Renaming
Chunhao Dong

∗

Beijing Institute of Technology

Beijing, China

dongchunhao22@bit.edu.cn

Yanjie Jiang
∗

Peking University

Beijing, China

yanjiejiang@pku.edu.cn

Nan Niu

University of Cincinnati

United States

nan.niu@uc.edu

Yuxia Zhang

Beijing Institute of Technology

Beijing, China

yuxiazh@bit.edu.cn

Hui Liu
†

Beijing Institute of Technology

Beijing, China

liuhui08@bit.edu.cn

ABSTRACT
Renaming is one of the most popular software refactorings. Al-

though developers may know what the new name should be when

they conduct a renaming, it remains valuable for refactoring tools to

recommend new names automatically so that developers can simply

hit Enter and efficiently accept the recommendation to accomplish

the refactoring. Consequently, most IDEs automatically recommend

new names for renaming refactorings by default. However, the rec-

ommendation made by mainstream IDEs is often incorrect. For

example, the precision of IntelliJ IDEA in recommending names

for field renamings is as low as 6.3%. To improve the accuracy,

in this paper, we propose a context-aware lightweight approach

(called CARER) to recommend new names for Java field renamings.

Different from mainstream IDEs that rely heavily on initializers

and data types of the to-be-renamed fields, CARER exploits both

dynamic and static contexts of the renamings as well as naming

conventions. We evaluate CARER on 1.1K real-world field renamings

discovered from open-source applications. Our evaluation results

suggest that CARER can significantly improve the state of the prac-

tice in recommending new names for field renamings, improving

the precision from 6.30% to 61.15%, and recall from 6.30% to 41.50%.

Our evaluation results also suggest that CARER is as efficient as

IntelliJ IDEA is, making it suitable to be integrated into IDEs.

KEYWORDS
Refactoring, Rename, Recommendation, Context-Aware

1 INTRODUCTION
Renaming is by far the most frequently conducted refactoring [17].

Renamings could be conducted for different reasons. First, software

entities should be renamed if they are named improperly. Improper

names often have a significant negative impact on the readability

∗
Chunhao Dong and Yanjie Jiang made equal contributions to this work.

†
Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0217-4/24/04. . . $15.00

https://doi.org/10.1145/3597503.3639195

and maintainability of the source code. Consequently, they should

be replaced (renamed) with well-designed names. Another possible

reason for renaming is that the roles of some software entities have

changed with the evolution of the software applications, and thus

they should be renamed to reflect the new roles. Notably, renaming

could be applied to various software entities, and the most common

renamings include method renaming, field renaming, parameter

renaming, local variable renaming, and class renaming.

Most refactoring tools, including mainstream IDEs, provide au-

tomated or semi-automated tool support for renaming. Notably,

renaming is not easy. It may involve complex software analysis

to accurately identify all identifiers that should be replaced, and

any incorrect analysis may result in syntax errors and/or semantic

errors [41]. Another challenge in renaming is the recommendation

of new names. Although it is likely that developers know what the

new name should be when they conduct a rename refactoring, it

remains valuable to recommend the new name automatically so

that developers can simply click the OK button (or hit Enter) to
accomplish the refactoring. However, without a full understand-

ing of the source code and the motivation behind the renaming,

it remains challenging to figure out the expected new name. For

example, according to the evaluation results in Section 3.4, most

(around 93%) new names recommended by IntelliJ IDEA for field
renamings are incorrect. As a result, the new names recommended

by such refactoring tools are often ignored by developers, and they

have to coin and type in the new names manually. Because of the

low accuracy, some refactoring tools, like Eclipse, abandon the

functionality of new name recommendations.

To improve the accuracy of name recommendation, in this pa-

per, we propose CARER, a context-aware name recommendation

approach for field renamings. It leverages a sequence of context-

aware heuristics to suggest names that align with the expectations

of developers for the to-be-renamed Java fields. Different from exist-

ing approaches that rely heavily on the data type and initialization

of the to-be-renamed field, CARER exploits naming conventions, dy-

namic contexts of the field, and static contexts of the field. Dynamic

contexts of a field renaming refer to field renamings conducted

recently within the enclosing project. Recent renamings are useful

because the current renaming may follow the same rationale as the

recent renamings. Notably, most refactoring tools (e.g., IntelliJ
IDEA and Eclipse) collect all refactorings automatically as a refac-

toring history so that conducted refactorings can be undone. Conse-

quently, dynamic contexts are inherently available. Static contexts

of a field renaming refer to its sibling fields, its initialization, its data

https://doi.org/10.1145/3597503.3639195

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Chunhao Dong, Yanjie Jiang, Nan Niu, Yuxia Zhang, and Hui Liu

Figure 1: Overview

type, and its assignments. Such static contexts are useful because

they often either contain the field name directly or imply some

class-specific common structures of field names.

We evaluate CARER with 11,085 real-world field renamings Our

evaluation results suggest that CARER substantially improves the

state of the art and the state of the practice. Compared to the main-

stream IDE IntelliJ IDEA, CARER improves precision and recall

by 871% and 559%, respectively. Compared to the state-of-the-art

code completion approach Incoder [20], CARER improves precision

and recall by 356% and 209%, respectively. Our evaluation results

also suggest that CARER is efficient, and its average response time

is less than 2 milliseconds.The main contributions are as follows:

• A novel approach (CARER) to recommending new names for

Java field renaming. To the best of our knowledge, it is the first

approach in this line that exploits the dynamic and static contexts

of the renamings as well as naming conventions.

• A public implementation [10] of the proposed approach.

• A benchmark [10] containing 11,085 real-world field renamings.

2 APPROACH
2.1 Overview
Fig. 1 presents the overview of CARER. It employs a sequence of

heuristics to suggest a new name for the to-be-renamed field. Over-

all, it works as follows:

• First, if some field renamings have been applied to the enclosing

project recently, CARER selects the most suitable renaming as a

reference, analyzes its changing pattern, and applies this pattern

to the existing name of the to-be-renamed field. The resulting

name is recommended as the new name.

• CARER formats the name of the to-be-renamed field if it conflicts

with widely-used naming conventions or project-specific naming

conventions. The resulting name, if any, is recommended.

• CARER suggests a new name according to the static contexts of the

to-be-renamed field, i.e., its initialization, expressions assigned

to it, its data type, and methods that return the field.

2.2 Dynamic Context-based Recommendation
Dynamic contexts of a field renaming refer to recently applied

field renamings conducted to the project by the current developer.

Notably, most IDEs keep recognizing and recording refactorings

Algorithm 1: Dynamic Context-based Recommendation

Input: 𝑓 // the field to be renamed
Input: RS // recently applied field renamings
Input: ConflictNames // all names visible at the class level
Output: newName // recommended name

1 if 𝑅𝑆 = 𝑛𝑢𝑙𝑙 then
2 return null //not applicable
3 end
4 RS’← RANKING(RS, 𝑓)

5 foreach r ∈ RS’ do
6 // validate if refactoring 𝑟 changed naming conventions.
7 if Convention(f.name) = Convention(r.oldName) &

Convention(r.oldName) ≠ Convention(r.newName) then
8 //apply the same change on naming convention
9 𝑓 .𝑛𝑎𝑚𝑒 ← ConvertNamingConvention(𝑓 .𝑛𝑎𝑚𝑒 ,

Convention(r.newName))

10 end
11 // infer regular expression for the change.
12 rm← regularMatch(r.oldName, r.newName)

13 if !rm.IsEmpty() then
14 //apply the regular expression to the name.
15 newName← rm(𝑓 .𝑛𝑎𝑚𝑒)

16 end
17 // newName should not conflict with other fields
18 if newName ≠ null & newName ∉ ConflictNames then
19 return newName

20 end
21 end
22 return null //fail to make recommendation
23 Ranking(RS, f):
24 // renaming histories applied on the same file
25 inFileRS=RefactoringsOnGivenFile(RS,f.file)

26 //renaming histories applied on other files
27 outSideRS=RS-inFileRS

28 RankByDataTypeAndDistance(inFileRS,f)

29 RankByDataTypeAndDistance(outSideRS,f)

30 //Appending refactorings in outSideRS to the end of
inFileRS

31 return inFileRS+ outSideRS

32 end
33 RankByDataTypeAndDistance(RS, f):
34 // renamings on fields whose data types equal to that of f.
35 𝑅𝑆1=RefactoringsOnGivenDataType(RS,f.dataType)

36 //renaming refactorings on fields of other data types.
37 𝑅𝑆2=RS-𝑅𝑆1
38 //refactorings physically closer to f are ranked on the top.
39 𝑅𝑆1.RankByDistance(f)

40 //refactorings physically closer to f are ranked on the top.
41 𝑅𝑆2.RankByDistance(f)

42 // appending refactorings in 𝑅𝑆2 to the end of 𝑅𝑆1
43 return 𝑅𝑆1+𝑅𝑆2
44 end

conducted on the given client and store the refactoring history au-

tomatically. CARER employs Algorithm 1 to recommend a new name

for the to-be-renamed field 𝑓 according to recent field renamings.

CARER first checks whether the renaming history is empty (Line

1 of Algorithm 1). If yes, it terminates the dynamic context-based

recommendation. Otherwise, CARER ranks the recently applied field
renamings (Line 4, and Lines 23-44). Renamings applied on the file

where 𝑓 is defined, have higher priority than others. CARER also

Context-Aware Name Recommendation for Field Renaming ICSE ’24, April 14–20, 2024, Lisbon, Portugal

1 // Recently renamed from "sdiag_family" into "mSdiagFamily
"

2 private final byte mSdiagFamily;
3 //to be renamed into "mSdiagProtocal"
4 private final byte sdiag_protocol;
5 // Recently renamed from "id" into "mId"
6 private final StructInetDiagSockId mId;
7 ...

Listing 1: Renaming Field sdiag_protocol

prioritizes field renamings where the renamed fields are of the same

data type as 𝑓 (Lines 34-35). Finally, refactorings that are physically

closer to 𝑓 take precedence over more distant ones (Lines 36-41).

After the ranking of refactoring histories, CARER visits each of

them in turn as follows (i.e., the iteration on Lines 5-21):

• If refactoring 𝑟 changed the naming convention of the associated

field i.e., 𝐶𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛(𝑟 .𝑜𝑙𝑑𝑁𝑎𝑚𝑒) ≠ 𝐶𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛(𝑟 .𝑛𝑒𝑤𝑁𝑎𝑚𝑒),
and the change is applicable to 𝑓 (i.e., 𝐶𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛(𝑓 .𝑛𝑎𝑚𝑒) =
𝐶𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛(𝑟 .𝑜𝑙𝑑𝑁𝑎𝑚𝑒)), CARER applies the same change (of

naming conventions) to the current name of 𝑓 (Lines 6-10). Cur-

rently, CARER supports the interchanges among themost common

naming conventions, i.e., CamelCase [12], Constant naming con-
vention [18], and UnderScoreCase [45].
• CARER infers the regular expression for the change and applies it

to the original field name (Lines 11-16). CARER aligns the token
sequences in 𝑜𝑙𝑑𝑁𝑎𝑚𝑒 and 𝑛𝑒𝑤𝑁𝑎𝑚𝑒 , validates whether the

renaming is to replace (or add) a prefix, to replace (or add) a suffix,

or to replace (or remove) a word sequence. All such editions are

recorded as a set of regular expressions and are applied to the

original name of the to-be-renamed field (Line 15) if they are

applicable to the name.

• CARER validates whether newName conflicts with other names in

the scope. If not, it is recommended (Line 19). Otherwise, CARER
begins the next iteration.

We take the real-world example in Listing 1 to explain Algo-

rithm 1. In this example, the field "sdiag_protocal" (Line 4) should
be renamed into "mSdiagProtocal" [4]. For this renaming, we can

retrieve two renamings conducted recently within the same closing

file [4], i.e., renaming "sdiag_family" into "mSdiagFamily" (noted
as 𝑟1, Line 2), and renaming "Id" into "mId" (noted as 𝑟2, Line 6).

Consequently, 𝑅𝑆 = {𝑟1} ∪ {𝑟2}. 𝑟1 is ranked at the top (Line 4 of

Algorithm 1) because the field renamed by it has the same data

type as the to-be-renamed field 𝑓 (Lines 23-44). For the top re-

naming history 𝑟1, the naming convention-based analysis (Lines

7-10) recognizes that 𝑟1 has changed the naming convention from

underscore to CamelCase, and thus it changes the original name

"sdiag_protocal" (underscore) into "sdiagProtocal" (CamelCase). After
that, the algorithm recognizes that 𝑟1 has added the prefix "m" to

the original name (Line 12), and thus it also adds "m" to "sdiagProto-
cal", making newName equal to "mSdiagProtocal". Note that adding
prefixes should not break naming conventions, and thus the initial

character "s" is capitalized when it is preceded by the prefix. The

algorithm returns this name and terminates (Line 19) because this

name does not conflict with any other names.

Algorithm 2:Naming Convention-based Recommendation

Input: 𝑓 // the field to be renamed
Input: FS //all field in the class
Input: ConflictNames // all names visible at the class level
Output: newName // recommended name

1 if 𝐹𝑆 ≠ 𝑛𝑢𝑙𝑙 then
2 HEURISTICS1(FS,f)

3 end
4 // in case Heuristic1 does not work
5 if 𝑓 .𝑛𝑒𝑤𝑁𝑎𝑚𝑒 = 𝑛𝑢𝑙𝑙 then
6 // execute Heuristic 2 or 3 based on the modifier.
7 if (IsStatic(f) & IsFinal(f)) || InInterface(f) then
8 HEURISTICS2(f)

9 else
10 HEURISTICS3(f)

11 end
12 end
13 if 𝐹𝑆 ≠ 𝑛𝑢𝑙𝑙 then
14 //determine whether to execute Heuristic 4 or 5
15 if ! HEURISTICS4(FS, f) then
16 HEURISTICS5(FS, f)

17 end
18 end
19 // newName should not conflict with other fields
20 if 𝑓 .𝑛𝑒𝑤𝑁𝑎𝑚𝑒 ∉ 𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑁𝑎𝑚𝑒 then
21 return f.newName

22 else
23 return null // fail to make recommendation
24 end

2.3 Naming Convention-based
Recommendation

If the old name of the to-be-renamed field does not follow widely-

used naming conventions whereas other fields do follow such con-

ventions, it is likely that the developer (who is conducting the

renaming) would like to format the original name according to

corresponding conventions. Based on this assumption, we propose

the following heuristics to recommend new names, and the detailed

algorithms are presented in Algorithm 2 and Algorithm 3.

Heuristics 1. Fields within the same class should follow the same
naming convention. Consequently, if the selected field does not follow
the dominating naming convention, CARER recommends a new name
by enforcing the dominating naming convention.

The implementation of this heuristic is presented in Lines 1-9

of Algorithm 3. CARER first retrieves fields within the enclosing

class that share the same modifiers (concerning final and static
only) with 𝑓 . CARER analyzes the dominating naming convention

followed by most of the resulting fields (Lines 2-5 of Algorithm 3).

If the dominating convention is any of the well-known conventions

(i.e., CamelCase, UnderScoreCase, and Constant’s naming convention)
and the current name of the to-be-refactored field does not follow

this dominating naming convention, CARER formats the name to

make it consistent with the convention.

Heuristics 2. Static and final fields, as well as fields defined in
interfaces, should follow the naming convention for constants (noted
as constant’s naming convention). Consequently, if their names do
not follow the constant’s naming convention, CARER recommends new

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Chunhao Dong, Yanjie Jiang, Nan Niu, Yuxia Zhang, and Hui Liu

names by formatting the existing names according to the constant’s
naming convention.

According to the widely-used naming conventions [19], names of

constants should follow the special format where all letters are capi-

talized and words are connected by underlines. For convenience, we

call it constant’s naming convention. This heuristics is implemented

in lines 7-8 of Algorithm 2. Notably, all fields defined within an

interface are static and final by default [45], and thus they fit the

preconditions of these heuristics.

Heuristics 3. Java fields (excluding static and final fields as
well as fields within interfaces) should follow the CamelCase naming
convention. Consequently, if the selected field does not follow the
CamelCase naming convention, CARER recommends a new name for
the selected field by formatting its existing name according to the
CamelCase naming convention.

CamelCase naming convention is by far the most common naming

convention for Java [19]. In most cases, it is the default setting for

Java identifiers (except for some special elements like static and final

fields). This heuristics is implemented on Lines 15-19 of Algorithm 3.

If the field to be renamed does not follow this default convention,

it is likely that the developers would like to make the selected field

follow this default convention. In this case, CARER should capitalize
all initial characters (in the original field name) except for the initial

character of the first word.

The preceding heuristics focus on the capitalization of letters

and the connectors among tokens. After these heuristics, CARER
takes Heuristics 4 and Heuristic 5 to recommend a new name.

Heuristics 4. If most fields in the enclosing class contain a com-
mon prefix whereas the to-be-renamed field does not contain the
common prefix, CARER appends the common prefix to its original
name.

It is quite often that developers would like to use some prefixes

(e.g., ‘𝑓 ’ for fields) to identify special identifiers (like fields). If

more than half of the sibling fields contain a common prefix that

the current name of 𝑓 does not have (Lines 20-29 of Algorithm 3),

CARER appends the prefix to the current name.

Heuristics 5. If all of its sibling fields of type 𝑓 .𝑑𝑎𝑡𝑎𝑇𝑦𝑝𝑒 share
a common prefix (and/or suffix) that 𝑓 does not have, CARER appends
the common prefix (and/or suffix) to the current name 𝑓 .

Some common prefixes and suffixes are employed to highlight

the data type of fields. For example, fields of type List often have the
suffix "List". In case its sibling fields share such data type-specific

prefix (and/or suffix), CARER should append such prefix (suffix) to 𝑓

as well. The implementation is presented on Lines 30-44 of Algo-

rithm 3. The method FieldsOfGivenType(FS, f.dataType) on Line 32

retrieves all fields in FS whose data types are equal to 𝑓 .𝑑𝑎𝑡𝑎𝑇𝑦𝑝𝑒 .

Method mostCommonPrefix(FS’) on Line 34 finds out the most pop-

ular prefix among the fields within FS’, and returns the prefix as

well as the number of fields (in FS’) that contain the prefix. Method

mostCommonSuffix(FS’) is similar to mostCommonPrefix(FS’), but
returns the most popular suffix.

To explain Algorithm 2 and Algorithm 3, we leverage the real-

world field renaming from Alluxio [1] (as presented in Listing 2)

where the field "fileType" is renamed into "mFileType". Algorithm 2

Algorithm 3: Auxiliary Functions

1 HEURISTICS1(FS, f):
2 //retrieve all fields with the same modifiers as f
3 FS’← RetrieveFields(IsStatic(f),IsFinal(f))

4 //analyze the dominating naming convention.
5 cvt=DominatingConvention(FS’)

6 if cvt ∈ {Camel, underScore, Constant} & cvt ≠
Convention(f.oldName) then

7 f.newName← CoverNamingConvention(f, cvt)

8 end
9 end

10 HEURISTICS2(f):
11 if Convention(f.oldName) ≠ Constant then
12 f.newName← Cover2Constant(f.oldName)

f.oldName← f.newName

13 end
14 end
15 HEURISTICS3(f):
16 if Convention(f.oldName) ≠ CamelCase then
17 f.newName← Cover2CamelCase(f.oldName)

f.oldName← f.newName

18 end
19 end
20 HEURISTICS4(FS, f):
21 // collect the most frequent prefix
22 [prefix, frequency] = MostCommonPrefix(FS)

23 if frequency>FS.size*0.5 & !containPrefix(f.oldName,
prefix) then

24 f.newName← addPrefix(f.oldName, prefix)

25 return True

26 else
27 return False

28 end
29 end
30 HEURISTICS5(FS, f):
31 // collect fields with same data type as f
32 FS’← FieldsOfGivenType(FS, f.dataType)

33 if 𝐹𝑆 ′ ≠ ∅ then
34 [prefix, frequency]=MostCommonPrefix(FS’)

35 if frequency=FS’.size & !containPrefix(f.oldName,
prefix) then

36 f.newName← addPrefix(f.oldName, prefix)

f.oldName=f.newName

37 end
38 // collect the common suffix
39 [suffix, frequency]=MostCommonSuffix(FS’)

40 if frequency=FS’.size & !containSuffix(f.oldName,
suffix) then

41 f.newName← addSuffix(f.oldName, suffix)

42 end
43 end
44 end

first invokes HEURISTICS1 (Line 2), recognizes that fields within the

same class follow CamelCase convention, and skips the if-statement
(Lines 6-9 of Algorithm 3) because 𝑓 follows the same naming

convention. Algorithm 2 skips HEURISTICS2 (Line 8) but invokes
HEURISTICS3 (Line 10) because 𝑓 is not static or final. HEURISTICS3
fails because the old name of 𝑓 does follow CamelCase (Line 16
of Algorithm 3). Consequently, Algorithm 2 invokes HEURISTICS4

Context-Aware Name Recommendation for Field Renaming ICSE ’24, April 14–20, 2024, Lisbon, Portugal

1 public TemporaryFolder mFolder = new TemporaryFolder ();
2 //To be renamed into "mFileType"
3 public String fileType;
4 public Pair <PropertyKey , String > mTestConf;
5 private String mLocation;

Listing 2: Renaming Field fileType

(Line 15). The latter recognizes that all other fields within the class

have a common prefix "m" that 𝑓 does not have (Lines 22-23 of

Algorithm 3). Consequently, it adds the prefix to the old name "file-
Type", updates newName with the resulting string (i.e., "mFileType")
on Line 24, and returns true. Since HEURISTICS4 on Line 15 returns

true, Algorithm 2 skips Line 16, and returns newName on Line 21.

2.4 Static Context-based Recommendation
If neither the dynamic context-based recommendation in Algo-

rithm 1 nor the naming convention-based recommendation suc-

ceeds, CARER leverages static contexts of the to-be-renamed field

to recommend a new name as presented in Algorithm 4. Notably,

the static contexts of 𝑓 include the right assignments to 𝑓 (e.g.,

𝑡ℎ𝑖𝑠 .𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 𝑎𝑑𝑑𝑟𝑒𝑠𝑠), the initialization of 𝑓 , the data type of 𝑓 ,

and the names of methods that contain the statement "return f".

Heuristics 6. If field 𝑓 is initialized or assigned with a method
invocation, CARER copies the simple name of the invoked method,
removes all special tokens from it (if there is any), and recommends
the resulting string as the new name for 𝑓 . If field 𝑓 is initialized or
assigned with a parameter or a field inherited from the superclass,
CARER retrieves the simple name of the parameter (or field), and
recommends it as the new name for 𝑓 .

The implementation of this heuristic is presented in Lines 1-

8 and 23-44. If the field to be renamed has initialization, CARER
calls the method RecWithInitOrAssignment (Line 3) to recommend

the field name according to the initialization. Otherwise, it calls

the method RecWithInitOrAssignment (Line 7) to recommend the

field name according to its assignments. Notably, assignments and

initializations are handled in the same way by the same method

RecWithInitOrAssignment (Lines 23-44). Initializations are exploited
first (Lines 1-4), and CARER will terminate if it succeeds in recom-

mending names with initializations. In this case, assignments have

no chance to be exploited (Line 7).

For each of the method invocations used as assignment or initial-

ization to 𝑓 , CARER retries the simple name of the method (Line 28)

and calls the method RemoveSpecialTokens to remove special tokens

from the name. If the method name begins with a verb (in its base

form), RemoveSpecialTokens removes the verb. Note that method

names often begin with verbs, e.g., "get", "split", "create", "set", and

"retrieve". However, fields are rarely named with such verbs. For

example, in the field declaration "private String name=getName()",
the simple method name is "getName" whereas the field name is

"name" that does not contain the verb "get".
If the field is initialized or assigned with a parameter or a field

inherited from the superclass, CARER simply retrieves the simple

name of the parameter or the field and recommends the simple

name as the new name for the to-be-renamed filed 𝑓 (Lines 34-41).

Algorithm 4: Static Context-based Recommendation

Input: f // the field to be renamed
Input: RSMs //right assignments assigned to f
Input: INE //initialization of f
Input: DT //data type of f
Input:MNs // methods contain statement "return f"
Input: ConflictNames // all names visible at the class level.
Output: newName // recommended name.

1 if 𝐼𝑁𝐸 ≠ ∅ then
2 // recommend newName based on initialization
3 newName← RecWithInitOrAssignment(INE,f)

4 end
5 // recommend newName based on right assignment
6 if newName= 𝑛𝑢𝑙𝑙 & 𝑅𝑆𝑀𝑠 ≠ ∅ then
7 newName← RecWithInitOrAssignment(RSMs,f)

8 end
9 // recommend newName based on method name

10 if newName= 𝑛𝑢𝑙𝑙 &𝑀𝑁𝑠 ≠ ∅ then
11 newName← RecWithMethodNames(MNs)

12 end
13 // recommend newName based on its data type
14 if newName= 𝑛𝑢𝑙𝑙 & IsCustomType(DT) then
15 newName← RecWithDataType(DT)

16 end
17 // newName should not conflict with other fields
18 if newName≠ null && newName ∉ ConflictNames then
19 return newName

20 else
21 return null // fail to make recommendation
22 end
23 RecWithInitOrAssignment(exps, f):
24 // traverse all assignments or initialization
25 foreach 𝑒𝑥𝑝 ∈ 𝑒𝑥𝑝𝑠 do
26 // method invocation as f initialization or assignment
27 if IsMethodInvocation(exp) then
28 name=getMethodName(exp)

newName=RemoveSpecialTokens(name)

29 // newName should not conflict with other fields
30 if newName ∉ ConflictNames then
31 return newName

32 end
33 end
34 //parameter(superField) as f initialization(assignment)
35 if IsParameter(exp) or IsSuperField(exp) then
36 newName=getSimpleName(exp)

37 // newName should not conflict with other fields
38 if newName ∉ ConflictNames then
39 return newName

40 end
41 end
42 end
43 return null

44 end

Heuristics 7. If a method returns 𝑓 , CARER retrieves the simple
name of the method, removes all special tokens from it, and returns
the resulting string as the new name.

This heuristic is implemented on Lines 9-12 where𝑀𝑁𝑠 repre-

sents all methods that contain the statement "return f ". Method

RecWithMethodNames(MNs) on Line 11 retrieves the first method

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Chunhao Dong, Yanjie Jiang, Nan Niu, Yuxia Zhang, and Hui Liu

1 //to be renamed into "result"
2 private final CheckResult checkResult;
3 public LotteryTicketCheckResult(CheckResult result) {
4 checkResult = result;
5 ...
6 }

Listing 3: Renaming Field checkResult

in𝑀𝑁𝑠 , calls RemoveSpecialTokens to remove special tokens from

the method name, and returns the resulting string as the new name.

In case CARER cannot recommend a new name according to any of

the preceding heuristics, it should leverage the following heuristics

to recommend a new name according to the data type of 𝑓 .

Heuristics 8. If the data type of 𝑓 is a custom type and its existing
name is different from the name of the data type, CARER returns the
name of the data type as the new field name.

The implementation of the heuristics is presented in Lines 13-16.

According to our experience, developers often name fields, variables,

and parameters with the names of their corresponding data types.

For example, in the well-known "openjdk/jdk" project [3], the devel-
oper renamed the field "srv" to "serverSocket" where "serverSocket"
is the name of its type.

We take the real-word field renaming from LotteryTicketCheck-
Result.java [2] (as presented in Listing 3) to explain Algorithm 4. In

this example, a field is renamed from "checkResult" to "result". The
algorithm skips the first if-statement (Lines 1-4) because the field
𝑓 does not have any initialization. Since 𝑓 has been assigned by

the statement "checkResult=result" (Line 4 in Listing 3), Algorithm 4

invokes RecWithInitOrAssignment (Line 7). The latter skips the first
if-statement (Lines 26-33) but activates the second one (Lines 34-41)
because 𝑓 is assigned by a parameter. It then assigns a newName
with the simple name of the parameter (i.e., "result"). The algorithm
skips the following two if-statements (Lines 9-16) because newName
is not null, and returns newName as its recommendation (Line 19).

3 EVALUATION
3.1 Research Questions
Our evaluation investigates the following research questions:

• RQ1: Can CARER improve the state of the art or the state of

the practice in recommending new names for field renamings?

• RQ2: How well do the evaluated approaches work in recom-

mending names for different types of fields?

• RQ3: How accurate are the heuristics proposed in Section 2

and how often are they employed?

• RQ4: Is CARER efficient?

• RQ5: How does the heuristics overlap?

• RQ6: How prevalent is each heuristic in the dataset?

RQ1 investigates the performance of CARER by comparing it

against the state-of-the-art approaches. We compare CARER against

IntelliJ IDEA (called IDEA for short) [5], Incoder [20] and Zhang’
s [49]. IDEA is selected because it presents the state of the practice.

IDEA is one of the most popular IDEs for Java, and it is well-known

for its intelligence. Incoder [20] is selected because it represents

the state of the art. Given a piece of code with some blanks (called

masks [21]), Incoder can automatically fill in the blanks with auto-

matically generated source code. If the occurrence of a field name

is replaced with a mask, the Incoder will generate a name to re-

place the mask. Note that for each of the evaluated approaches,

we only consider its first suggestion for each renaming because

both CARER and Incoder make only a single suggestion for each

refactoring. Notably, some well-known IDEs, like Eclipse and Visual

Studio, are not selected for comparison although they do support

refactorings. We notice that such IDEs do not suggest new names

for field renamings, and thus we cannot compare them against

the proposed approach. jSparrow [9] does support some special

renamings of fields. However, it only renames fields whose names

contain underscores or "$" by switching the naming convention

to CamelCase. Consequently, it looks more like a fixing of naming

conventions instead of a generic filed renaming. More than 95% of

the field renamings collected in Section 3.2 are out of the scope of

jSparrow. Consequently, jSparrow is not selected for comparison

Zhang’s [49] is selected because it represents the state of the art.

RQ2 investigates how the data types of fields may influence the

performance.RQ3 investigates the effect of the employed heuristics.

CARER is essentially a sequence of heuristics, and thus it is highly

valuable to figure out which heuristics are more important. RQ4
concerns CARER’s efficiency. It is critical because developers cannot

tolerate any substantial delay during a rename refactoring. RQ5
and RQ6 concern the impact of each component on CARER and its

prevalence in the data, respectively.

3.2 Dataset
To facilitate the evaluation, we collect real-world field renamings

from open-source applications. We select the top 1,000 Java projects

from GitHub according to their stars. Such subjects come from

different domains and are maintained by different teams, and thus

they have great diversity. We apply RefactoringMiner [42] to all

of the projects to discover field renamings. RefactoringMiner is

selected because it represents the state of the art in refactoring

discovery. It reports various categories of refactorings (including

field rename) by comparing two successive versions of the same

applications. It should be noted that RefactoringMiner reports many

false positives, making it impractical to use directly the raw data

from RefactoringMiner. To minimize the false positives, we take the

following measurements:

• We exclude all potential field renamings that changed the data

type of the associated fields. According to our experience with

RefactoringMiner, most false positives belong to this category.

The major reason for such false positives is that RefactoringMiner
often mismatches a field in the old version to another field in the

new version although these two fields have different names and

different data types.

• If a renaming renamed a field from oldName to newName, and
another renaming later renamed the same field from newName
to oldName, we exclude both of them.

• If a renaming (noted as 𝑅1) renamed a field from oldName to
newName, and another renaming (noted as 𝑅2) later renamed the

same field from newName to anotherName, we exclude 𝑅1.

Finally, we successfully collected 11,085 real-world field renam-

ings from 388 open-source applications.

Context-Aware Name Recommendation for Field Renaming ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 1: Comparison against Existing Approaches
Approaches Precision Recall F1

CARER 61.15% 41.50% 49.44%

IDEA 6.30% 6.30% 6.30%

Incoder 13.41% 13.41% 13.41%

Zhang’s[49] 20.54% 19.81% 20.17%

3.3 Process and Metrics
Note that CARER exploits renaming histories to make suggestions

for the current renaming. Consequently, the order of the renamings

could influence the results of the evaluations. However, if multi-

ple renamings in the dataset are applied on the same commit, we

cannot distinguish the order of the refactorings. To this end, we

rank such renamings in the same order as they are discovered by

RefactoringMiner. According to such an order, we apply CARER and

the baseline approaches to make recommendations for each of the

renamings. Since we only leverage the field renamings within the

same commit as the dynamic contexts, if a commit contains only a

single refactoring, the evaluation order of it does not matter. The

evaluation order of refactorings belonging to different commits

does not matter, either.

For each of the renamings, the recommendation (of any of the

evaluated approaches) is correct if and only if the suggested name

is identical to that coined by the original developers. To mea-

sure the performance of the evaluated approaches, we compute

common metrics, including precision, recall, and F1. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
#𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑆𝑢𝑔𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝑠

#𝑆𝑢𝑔𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝑠
where #𝑆𝑢𝑔𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝑠 is the number of sugges-

tions made by the evaluated approach, and #𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑆𝑢𝑔𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝑠 is

the number of correct suggestions made by the approach. 𝑅𝑒𝑐𝑎𝑙𝑙 =
#𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑆𝑢𝑔𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝑠

#𝑇𝑒𝑠𝑡𝑒𝑑 𝑅𝑒𝑓 𝑎𝑐𝑡𝑜𝑟𝑖𝑛𝑔𝑠
where #𝑇𝑒𝑠𝑡𝑒𝑑 𝑅𝑒 𝑓 𝑎𝑐𝑡𝑜𝑟𝑖𝑛𝑔𝑠 is the total num-

ber of evaluated refactorings. 𝐹1 = 2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 .

3.4 RQ1:Improving the State of the Art
To answer RQ1, we compare CARER against the state of the art

(Incoder, Zhang’s [49]) and the state of the practice (IntelliJ
IDEA). The evaluation results are presented in Table 1. Notably, for

IntelliJ IDEA (and Incoder as well), the precision always equals

recall because it makes recommendations for all field renamings.

In contrast, CARER may refuse to make recommendations when it

lacks confidence. As a result, its precision is likely to be greater

than its recall.

From Table 1, we make the following observation:

• CARER substantially outperforms the state of the art and the state

of the practice. It improves F1 by 685% = (49.44%-6.3%) / 6.3%

(compared against IntelliJ IDEA) and 268% = (49.44%-13.41%)

/ 13.41% (compared against Incoder).
• Compared to the state of the art and the state of the practice,

CARER improves both precision and recall at the same time. The

improvement in precision is 871% = (61.15% - 6.3%) / 6.3% (com-

pared against IntelliJ IDEA) and 356% = (61.15%-13.41%) /

13.41% (compared against Incoder). Whereas the improvement

in recall is 559% = (41.50% - 6.30%) / 6.3%(compared against

IntelliJ IDEA)) and 209% =(41.50% - 13.41%) / 13.4% (compared

against Incoder).

1 /**" ClassGen.java" of openjdk/jdk
2 (commit :1 a0ff28ea10aaba53c5fbeb59800d3bcb1d228bc)*/
3

4 // Recently renamed from "field_vec" to "fieldList"
5 private final List <Field > fieldList = new ArrayList <>();
6

7 // Recently renamed from "method_vec" to "methodList"
8 private final List <Method > methodList = new ArrayList <>()

;
9

10 // Recently renamed from "attribute_vec" to "attributeList
"

11 private final List <Attribute > attributeList = new
ArrayList <>();

12

13 // Selected to-be-renamed field
14 private final List <String > interface_vec = new ArrayList

<>();
15 // Recommendation: CARER(" interfaceList "), IDEA("

arrayList "), Incoder (" methodNameList ")

Listing 4: Typical Example Where Dynamic Contexts Help

1 /** "HybridScanBasedCommandLineTestRunner.java" of
apache/pinot

2 (commit :31 a6b95200cc5845706d27304fc2ed4767ec2aab)*/
3

4 private static List <String > _invIndexCols = new ArrayList
<>(4);

5 ...
6 private static String _sortedColumn;
7 private static String _logFieleName;
8 private static boolean _inCdLine = false;
9 private static boolean _recordScanResponses = false;
10 private static boolean _compareWithRspFile = true;
11 private static boolean _scanRspFilePath;
12

13 // Selected to-be -renamed field
14 private static boolean multiThreaded = true;
15 // Recommendation: CARER(" _multiThreaded "), IDEA(" aBoolean

"), Incoder (" _sortOrderAscending ")
16 private FileWriter _scanRspFileWriter;
17 private LineNumberReader _scanRspFileReader;

Listing 5: Typical ExampleWhere Naming Conventions Help

• CARER outperforms Zhang’s approach [49] in suggesting field

names. The improvement in precision and recall are 40.61% =

(61.15% - 20.54%) pp and 21.69% = (41.50% - 19.81%) pp, respec-

tively.

• The precision (61.15%) of CARER is substantially greater than its

recall (41.50%). It may suggest that ignoring some challenging

cases helps improve the precision of CARER.

To illustrate why CARER can substantially outperform baseline

approaches, we present here some typical examples. The first ex-

ample is presented in Listing 4. This example is extracted from

the well-known application openjdk/jdk. When developers select

the field interface_vec, and click rename button, IntelliJ IDEA
recommends to rename it into "arrayList" according to its initial-

ization expression (i.e., "new ArrayList < >() "). Incoder leverages
a deep network to make a recommendation for the field, which

results in a new name "methodNameList". However, both of the rec-

ommended new names are different from the final field name (i.e.,

"interfaceList") that was manually coined by the developers. CARER
succeeds in recommending the new name ("interfaceList") in this

case because it takes full advantage of the field renamings conducted

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Chunhao Dong, Yanjie Jiang, Nan Niu, Yuxia Zhang, and Hui Liu

recently. We notice that the field fieldList on Line 5, methodList on
Line 8, and attributeList on Line 11, have been renamed recently

(within the same commit). CARER analyzes such renamings, and

realizes that the renamings have changed the naming convention

from UnderScoreCase [45] to CamelCase [12], and thus it turns the

initial field name "interface_vec" into "interfaceVec". CARER also re-

alizes that the field renamings have replaced the common suffix

"Vec" with "List", and thus it further changes the field name from

"interfaceVec" into "interfaceList". The latter is then recommended

as the new field name, which results in a perfect recommendation.

Listing 5 presents another example to illustrate how CARER out-

performs baseline approaches. The example is extracted from open-

source applications apache/pinot. We present all static fields defined

within the class HybridScanBasedCommandLineTestRunner. When

developers select the field "multiThreaded" (Line 14) for renaming,

CARER recommends a new name "_multiThreaded" that is exactly
the same as what the original developers finally used. CARER suc-
ceeds because it realizes that all static fields within the enclosing

class share the same common prefix "_" whereas the to-be-renamed

field does not. Consequently, CARER realizes that the purpose of the
renaming is to make it follow the naming convention (i.e., names

of static fields should begin with "_"). As a result, it appends the

prefix "_" to the original field name, which results in the recom-

mended new name "_multiThreaded". In contrast, both IntelliJ
IDEA and Incoder fail to make the correct recommendation for this

example. IDEA recommends "aBoolean" because of the field’s data
type (Boolean) whereas Incoder recommends "_sortOrderAscend-
ing" (we do not exactly know the rationale for the recommendation).

The new names, i.e., "aBoolean" and "_sortOrderAscending", are sub-
stantially different from the expected one (i.e., "_multiThreaded").

Listing 6 presents another typical example to illustrate how

CARER outperforms baseline approaches. This example is extracted

from the open-source application elastic/elasticsearch. When devel-

opers select the field "ops" (Line 8) for renaming, CARER recommends

a new name "interestOps". CARER notices that the method interestOps
(Lines 8-10) contains the statement "return ops". Consequently, ac-
cording to Heuristics 6, it recommends to copy the method name

(i.e., "interestOps") as the recommended field name. The recommen-

dation is correct because the recommended new name is identical

to that coined by the original developers of the program. However,

both IDEA and Incoder fail in this case. IDEA recommends "anInt"
because the data type of the field is "int". Incoder recommends

"readyOps" although it conflicts with another field on Line 7.

We employ the example in Listing 7 to explain why CARER some-

times fails. In this case, the field multiServerRegistry on Line 7 is se-

lected for rename. CARER recommends "multiServerUserRegistry" as
the new name according to Heuristics 6 because this field is assigned

with a new instance of MultiServerUserRegistry (Line 12). However,

the recommended name is different from the manually coined name

"registry", and thus the recommendation is incorrect. We also notice

that the recommendation of IDEA("multiServerUserRegistry") and
Incoder ("muitiRegistry") are also incorrect. The challenge here

is to guess the motivation for the renaming (i.e., to shorten the

field name by removing some determiners) and to figure out which

tokens should be removed.

1 /** "TestSelectionKey.java" of elastic/elasticsearch
2 (commit :1 d3b096374a10dadc8d2bd9b2b7088ea8e1136cb)*/
3

4 // Selected to-be -renamed field
5 private int ops = 0;
6 // Recommendation: CARER(" interestOps "), IDEA("anInt"),

Incoder (" readyOps ")
7 private int readyOps;
8 public int interestOps () {
9 return ops;
10 }

Listing 6: Typical Example Where Static Contexts Help

1 /** "MultiServerUserRegistryTests.java" of spring -
projects/spring -framework

2 (commit :6 aa216afb6600582a36451c26427faa8e8262132)*/
3

4 private SimpUserRegistry localRegistry;
5

6 // Selected to-be -renamed field
7 private MultiServerUserRegistry multiServerRegistry;
8 // Recommendation: CARER(" multiServerUserRegistry "),IDEA("

multiServerUserRegistry "),Incoder (" muitiRegistry ")
9 private MessageConverter converter;
10 public void setUp() throws Exception {
11 this.localRegistry = Mockito.mock(SimpUserRegistry.

class);
12 this.multiServerRegistry = new MultiServerUserRegistry(

this.localRegistry);
13 this.converter = new MappingJackson2MessageConverter ();
14 }

Listing 7: Typical Example Where CARER Fails

3.5 RQ2: Influence of Data Types
To answer RQ2, we classify the to-be-renamed fields into three cat-

egories according to their data types. The first category (noted as

primitive types) is composed of fields whose data types are primitive

types predefined by Java [6] (e.g., int and Boolean). The second cate-
gory, noted as custom types, is composed of fields whose data types

are defined by the enclosing applications or included libraries [7].

The third category (noted as others) is composed of fields whose

data types are predefined Java reference types [8], e.g., String, List,
and Map. Table 2 presents the performance of the evaluated ap-

proaches on different categories of fields, P and R denote precision

and racall, respectively. From this table, we make the following

observations:

• CARER substantially outperforms baseline approaches in each

of the three categories of fields. The minimal improvement in

precision and recall are 22.82% = (59.09% - 36.27%) pp and 5.58%

= (41.85% - 36.27%) pp, respectively.

• The performance of the baseline approaches (i.e., IntilliJ IDEA
and Incoder) is substantially better on customer types than on

others (i.e., primitive types and others). One possible reason is

that fields of customer types are often named with the names of

their data types. As a result, all of the evaluated approaches have

a good chance to make correct suggestions.

3.6 RQ3: Effects of Heuristics
To answer research question RQ3, we first investigate the effect of

the three categories of heuristics, i.e., the dynamic context-based

recommendation (noted as DCR for short) in Section 2.2, the naming

Context-Aware Name Recommendation for Field Renaming ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 2: Performance on Different Types of Fields
Primitive Types Custom Types Others
P R P R P R

CARER 55.54% 45.15% 59.09% 41.85% 64.11% 39.11%

IDEA 0.46% 0.46% 24.92% 24.92% 2.46% 2.46%

Incoder 10.24% 10.24% 36.27% 36.27% 7.41% 7.41%

Table 3: Disabling Components of CARER
Setting Precision Recall F1

Default Setting 61.15% 41.50% 49.44%

Disabling DCR
∗

49.55% 25.59% 33.75%

Disabling NCR
†

59.37% 34.40% 43.56%

Disabling SCR
‡

77.34% 30.31% 43.55%

Table 4: Performance of Heuristics
Heuristic #Recommendation #Correct Precision

DCR DCR 1,999 1,758 87.94%

NCR

H1 481 315 65.49%

H2 300 251 83.66%

H3 47 38 80.85%

H4 190 79 41.58%

H5 224 128 57.15%

SCR

H6 3,126 1,617 51.73%

H7 456 206 45.18%

H8 586 182 31.06%

convention-based recommendation (noted as NCR for short) in

Section 2.3, and the static context-based recommendation (noted

as SCR for short) in Section 2.4. To this end, we disable one of

them at once, and repeat the evaluation. The evaluation results

are presented in Table 3. From this table, we make the following

observations:

• All of the three components of CARER are useful and indispens-

able. Disabling any of them results in a substantial reduction in

performance. The reduction in F1 varies from 5.88 percentage

points (pp) = 49.44% - 43.56% to 15.69 pp = 49.44% - 33.75%.

• Disabling the dynamic context-based recommendation (DCR)

results in the greatest reduction in performance. The precision is

reduced by 18.97% =(61.15% - 49.55%) / 61.15% and the reduction in

recall is 38.34% = (41.50% - 25.59%) / 41.50%. As a result, it results in

a substantial reduction in F1 of 31.74% = (49.44%-33.75%) / 49.44%.

The results may suggest that DCR is critical for the success of

CARER.
• Disabling static context-based recommendation (SCR) results in

a reduction in F1 and recall although it increases the precision. It

reduces F1 by 5.89 pp = 49.44%- 43.55%, and recall by 11.19 pp =

41.5%-30.31%. However, it also increases precision by 16.19 pp =

77.34%-61.15%. The results may suggest that SCR helps improve

recall and F1 because it rescues many cases where DCR and NCR

fail. However, SCR as a whole is less accurate (than DCR and

NCR), and thus employing SCR reduces the overall precision of

the proposed approach.

Since some components (e.g., SCR) are composed of multiple

heuristics, we further investigate the influence of such heuristics.

First, we count how many names each of the heuristics have rec-

ommended and how many of them are correct. The results are

presented in Table 4. Note that we do not disable any of the com-

ponents or heuristics while collecting the performance in Table 4:

We simply run CARER on the data set collected in Section 3.2.

From Table 4, we make the following observations:

• Each of the heuristics is useful. All of them have made some

correct recommendations, contributing to the overall recall of

the proposed approach. The number of correct suggestions made

by them varies from 38 (H3) to 1,758 (DCR).

• Some heuristics are more accurate than others. The precision of

DCR, H2, and H3 is substantially higher than that of others. H8

(recommending the name of the field’s data type as the field name)

has the lowest precision (31.06%), suggesting that recommending

data types as field names often results in rejection.

• DCR and H6 have the greatest numbers of correct recommenda-

tions. It may suggest that dynamic contexts, assignments, and

initialization of the field contribute the most to the success of

CARER.

3.7 RQ4: Efficiency
To answer RQ4, we measure how long it takes the evaluated ap-

proaches to make recommendations for a single field renaming.

The evaluation results suggest that CARER is efficient. The average

response time is 1.32 milliseconds. It is almost as efficient as the

state-of-the-practice approach (i.e., IntelliJ IDEA) whose average
response time is 1.13 milliseconds. We also notice that Incoder is
much more time-consuming than CARER and IntelliJ IDEA. Its
average response time is 32.62 seconds, substantially larger than

those of CARER and IntelliJ IDEA (1.32 and 1.13 milliseconds,

respectively).

3.8 RQ5: Overlapping
To investigate whether there is any overlap among the different

components of the proposed approach and how such overlap influ-

ences the overall performance, we enabled a single component at

a time. The evaluation results are presented in Table 5. From this

table, we make the following observations:

• The DCR has the highest precision. That is one of the reasons why

CARER prioritizes the DCR component to improve the precision

of the suggested name.

• SCR component has the highest recall although it results in the

lowest precision. It may suggest that SCR should be employed

only if other components fail.

• The sumof the recalls in Table 5 (i.e., 44.11%=15.86%+8.95%+19.30%)

is slightly higher than that (41.5%) of CARER when all compo-

nents work together. It may suggest that the components do

have overlap, but the overlap is rather small, confirming the

great complementarity among the components in CARER.

3.9 RQ6: Prevalence
To answer research question RQ6, we evaluated the popularity

of each heuristic algorithm in the dataset. Our evaluation results

are presented in Table 6. From this table, we make the following

observation:

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Chunhao Dong, Yanjie Jiang, Nan Niu, Yuxia Zhang, and Hui Liu

Table 5: RQ5: Effect of the Heuristics When Used Separately
Working

Component
Precision Recall

DCR 87.94% 15.86%

NCR 62.94% 8.95%

SCR 40.28% 19.30%

Table 6: Prevalence of Heuristics
Heuristic #Prevalence #Precision #Recall

DCR DCR 18.03 % 87.94% 15.86%

NCR

H1 5.14% 69.82% 3.59%

H2 4.04% 78.79% 3.18%

H3 10.61% 63.01% 6.68%

H4 2.02% 49.11% 1.00%

H5 2.30% 55.29% 1.27%

SCR

H6 40.58% 36.85% 14.96%

H7 4.19% 43.30% 1.81%

H8 28.12% 24.67% 6.94%

• The prevalence of different heuristics varies significantly, ranging

from 2.02% to 40.58%.

• H8 and H6 have significantly higher prevalence than others.

However, they also result in noticeably lower precision.

3.10 Threats to Validity
A threat to the external validity is that only a limited number of

field renamings are involved in the evaluation. The limited data size

may threaten the generality of the conclusions. To reduce the threat,

we select top open-source Java projects from GitHub according to

their #stars, and automatically discover all field renamings for the

evaluation. However, refactoring discovery is time and resource-

consuming, which makes it challenging to significantly increase

the size of the dataset.

A threat to constructive validity is that the automated discovery

of field renamings could be inaccurate. We employ the state-of-

the-art refactoring miner RefactoringMiner [42] to discover field

renamings by comparing two successive versions of the same ap-

plications. However, it may miss some refactorings and/or report

some false positives, which may result in an inaccurate benchmark

for the evaluation. To reduce the threat, we employ the state-of-the-

art tool RefactoringMiner, which is evaluated to be more accurate

than alternatives [40]. We also employ a sequence of heuristics (as

specified in Section 3.2) to exclude false positives.

Another threat to constructive validity is that a recommenda-

tion is counted as correct if and only if the recommended name is

identical to the one discovered in the version history. However, it

is likely that the recommended name could be even better than the

one in the version history, and thus the recommendation should

have been taken as correct even if the recommended name is dif-

ferent from the manually coined one. However, to the best of our

knowledge, there are no automated tools that can distinguish such

cases automatically. It is also impractical to distinguish such cases

manually because it is tedious and time-consuming.

4 RELATEDWORK
4.1 Suggesting Entity Names
Considering the difficulty in naming complex software entities, a

few approaches have been proposed to suggest names for software

entities. For example, Kashiwabara et al. [26] utilized association

rules [11] to mine the relationship between verbs in method names

and identifiers in the method bodies. With such association rules,

the approach recommends candidate verbs that may be used as

part of the method name. Hiroshi et al. [47] proposed Mercem to

suggest method names according to method bodies. It leverages

the sets of callees as the embedding representation of a method,

believing that methods with similar callees should have similar

embeddings. Mercem recommends a method name by searching for

methods whose embedding is similar to that of the given method.

Liu et al. [29]proposed an automated iterative algorithm ReMap-

per to match software entities between two successive versions.

Kurimoto et al. [27] suggest class names by employing heteroge-

neous graphs to quantitatively represent the properties and be-

haviors of classes. They first construct a graph of relationships be-

tween program elements (classes, methods, and fields) in a corpus.

They then employ a deep learning network to learn the mapping

between program element relationships to class names, and the

trained network is used to suggest class names. Liu et al. [30] con-

ducted empirical research to analyze potential factors related to

method names. The research findings suggest that method names

are closely related to project-specific contexts, in addition to the

factors previously identified [28, 29, 33]. Consequently, they im-

prove the deep-learning-based method name recommendation by

exploiting such program-specific contexts. CARER differs from

such approaches in that CARER focuses on field names whereas

such approaches focus on method names and class names. Another

difference is that CARER takes full advantage of the existing name

of the to-be-renamed entity as well as field renamings conducted

recently.

Recently, Zhang et al. [49] proposed a novel approach to identify

should-be-renamed identifiers and to suggest new identifiers to re-

place the original ones. The approach exploits various information

to predict whether a given identifier should be renamed. If yes, it

recommends a new identifier according to the to-be-renamed iden-

tifier (noted as 𝑜𝑑𝑙𝐼𝐷) as well as the renaming histories (noted as𝐻)

collected from the enclosing project. The recommendation is com-

posed of two parts. In the first part, it discovers token-level revision

patterns by mining the renaming histories, and generates candidate

identifiers by applying such patterns to 𝑜𝑑𝑙𝐼𝐷 . In the second part, it

retrieves renamings (from𝐻) where the renamed identifiers are sim-

ilar to 𝑜𝑑𝑙𝐼𝐷 , and recommends the new identifiers in the renamings

as candidate identifiers. All such candidate identifiers are sorted

according to the frequencies of the applied revision patterns and

the lexical similarity between 𝑜𝑑𝑙𝐼𝐷 and the identifiers renamed by

retrieved renaming histories. Our approach differs from Zhang’s

approach [49] in that they have different scopes, exploit different

contexts, and employ different algorithms. First, our approach fo-

cuses on field renamings only whereas Zhang’s approach considers

renamings of all identifiers. Second, our approach exploits various

contexts, e.g., sibling fields, naming conventions, field initialization,

and data type of the field that are not exploited by Zhang’s approach

Context-Aware Name Recommendation for Field Renaming ICSE ’24, April 14–20, 2024, Lisbon, Portugal

in the recommendation of new names. Finally, Zhang’s approach

exploits all renaming histories in the enclosing project, and thus

has enough data for revision pattern identification (mining), and

for direct reuse of identifiers. In contrast, our approach leverages

histories of field renamings conducted recently by the given client

only, and thus the dataset (histories) is too small for pattern mining.

Consequently, we design a sequence of fine-grained heuristics to

recommend a new identifier with a single field renaming selected

from the histories.

4.2 Suggesting Renaming Opportunities
It is often difficult for developers to figure out which entities should

be renamed. For example, Liu et al. [33] proposed a novel approach

to recommending renaming opportunities according to the consis-

tency between method names and method bodies. It also suggests

a new method name by searching a corpus of methods for method

names whose corresponding method bodies are highly similar to

the body of the to-be-rename method. DeepName [28] improved

this approach by exploiting additional contexts, e.g., methods called

by the current method. Another difference is that it leverages a

deep neural network to generate new method names instead of

reusing existing method names in corpus.

Butler et al. [14] investigated the correlation between different

granularity identifiers and low-quality source code identified with

static analysis. They employedmedical diagnostic test techniques to

identify which particular identifier naming flaws could be used as a

light-weight diagnostic of potentially problematic. In addition, they

subsequently proposed [15] a naming convention checking library

(called NOMINAL) for Java that allows the declarative specification

of conventions regarding typography and the use of abbreviations

and phrases. Peruma et al. [36] presented a tool (called IDEAL)

that utilizes well-known tools and libraries used for natural lan-

guage and static analysis, to detect linguistic anti-patterns. Zhang

et al. [48] focused on splitting of identifiers and expansion of ab-

breviations, and they proposed an effective and efficient identifier

normalization approach (called BEQAIN) to split identifiers into

their composing words and to expand the enclosed abbreviations.

In addition, Jiang et al. [23–25] also explored the expansion of ab-

breviations, and their approaches significantly improve the state

of the art. Liu et al. [16, 32] proposed a novel approach to suggest

renaming opportunities and to optimize existing IDEs. Whenever

a renaming is conducted by developers, it analyzes the rationale

for the naming and validates whether the same renaming rationale

holds for software entities that are closely related to the recently

renamed entity. if yes, it recommends a new name by re-applying

the renaming pattern to the original names of the recommended

entities.

Our approach differs from such approaches in that it depends on

developers to determine which entities (fields) should be renamed.

Another difference is that it exploits contexts (e.g., sibling fields,

assignments, and initialization), and naming conventions of the

to-be-renamed fields that are often ignored by existing approaches.

4.3 Empirical Study on Renamings
Anthony et al. [37] explored the evolution of identifiers through an

empirical study to understand the motivation for the evolution of

identifiers. They found that most renaming refactorings narrowed

the meaning of the identifiers. They also found that renamings of

software entities often occur with the changes in data types [38].

Osumi et al. [35] investigated the relationships both co-renamed

identifiers, and revealed several relationships between identifiers

often found in common renaming identifiers.

Mastropaolo et al. [34] quantitatively and qualitatively evalu-

ated the potential of three data-driven methods (i.e., N-gram [22],

T5 [39], and CugLM [31]) in supporting automated variable renam-

ing. The results demonstrated that CugLM significantly outper-

formed other methods. However, the author also pointed out the

limitations of existing generation models. To the best of our knowl-

edge, Incoder [20] proposed by Fried et al. is the latest advance in

this line. It is the first large-scale generative code model capable

of populating arbitrary area codes, and supporting various tasks,

e.g., variable re-naming, comment generation, and type inference.

Different from other models, Incoder adopts code infilling with

bidirectional context. According to their evaluation [20] , Incoder
significantly outperforms its alternatives (such as GPT-J [44], Code-

Parrot [43], GPT-NeoX [13], PolyCoder [46]). This is one of the

reasons why Incoder was selected as a baseline in our evaluation.

5 CONCLUSIONS AND FUTUREWORK
Software renaming is widely employed, and automated support

from IDEs (or professional refactoring tools) is critical for its suc-

cess. To this end, in this paper, we propose CARER, a context-aware
lightweight approach to recommending a new name for the to-be-

renamed field. It takes full advantage of dynamic and static contexts

of the field renaming as well as naming conventions. In contrast,

mainstream IDEs rely heavily on the data types and initialization

of the to-be-renamed fields, ignoring most contexts exploited by

CARER. As a result, CARER significantly improves the precision and

recall by 356% and 209%, respectively.

We would like to investigate how the proposed approach could

be adapted to renaming other software entities, like methods and

classes. This paper focuses on name recommendations for field

renaming because it is common, challenging, and less investigated.

The name recommendation for fields often results in low per-

formance (see Table 1), and most renaming recommendation ap-

proaches (See Section 4.1) focus on methods/classes with long im-

plementations instead of fields that do not have any associated

implementations (bodies).

The most critical future work, is to integrate the proposed ap-

proach into mainstream IDEs. We have submitted some issues and

pull requests to Eclipse concerning the proposed approach, and

some heuristics have already been merged into and distributed

with the standard distribution of Eclipse. Integrating the proposed

approach into mainstream IDEs (like Eclipse, IDEA, and Visual

Studio) could significantly increase its impact in the industry.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers from

ICSE 2024 for their insightful comments and constructive sugges-

tions. This work was partially supported by the National Natural

Science Foundation of China (62232003 and 62172037) and China

Postdoctoral Science Foundation (2023M740078).

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Chunhao Dong, Yanjie Jiang, Nan Niu, Yuxia Zhang, and Hui Liu

REFERENCES
[1] 2023. Commit History from Alluxio. https://github.com/Alluxio/alluxio/commit/

99ac10a1dd47176538af0d7824d97291d7fa305e

[2] 2023. Commit History from Iluwatar. https://github.com/iluwatar/java-design-

patterns/commit/5cf2fe009bc2c04dab737d41523576c6149e605c

[3] 2023. Commit History from OpenJDK/JDK. https://github.com/openjdk/jdk/

commit/5caa77b043ae490c3d7d56d181d0e07e6b859b9e

[4] 2023. Commit History from platform_frameworks_base. https:

//github.com/aosp-mirror/platform_frameworks_base/commit/

5d62167efc4b58f7d319bd11e85c34b42d7dc6ac

[5] 2023. IntelliJ IDEA. https://www.jetbrains.com/zh-cn/idea/.

[6] 2023. Java Oracle. https://docs.oracle.com/javase/tutorial/java/nutsandbolts/

datatypes.html.

[7] 2023. Java Oracle. https://docs.oracle.com/javase/tutorial/jdbc/basics/sqlcustom-

mapping.html.

[8] 2023. Java Oracle. https://docs.oracle.com/javase/8/docs/api/java/lang/ref/Refe-

rence.html.

[9] 2023. JSparrow. https://jsparrow.io/.

[10] 2023. Replication Package. https://github.com/DongChunHao/CARER

[11] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. 1993. Mining Asso-

ciation Rules between Sets of Items in Large Databases. In Proceedings of the
1993 ACM SIGMOD International Conference on Management of Data, Washington,
DC, USA, May 26-28, 1993, Peter Buneman and Sushil Jajodia (Eds.). ACM Press,

207–216. https://doi.org/10.1145/170035.170072

[12] Reem S. Alsuhaibani, Christian D. Newman, Michael J. Decker, Michael L. Collard,

and Jonathan I. Maletic. 2021. A Survey on Method Naming Standards: Ques-

tions and Responses Artifact. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion). 242–243.
https://doi.org/10.1109/ICSE-Companion52605.2021.00112

[13] Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence

Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler,

USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben

Wang, and Samuel Weinbach. 2022. GPT-NeoX-20B: An Open-Source Autore-

gressive Language Model. CoRR abs/2204.06745 (2022). https://doi.org/10.48550/

arXiv.2204.06745 arXiv:2204.06745

[14] Simon Butler, Michel Wermelinger, and Yijun Yu. 2015. Investigating naming

convention adherence in Java references. In 2015 IEEE International Conference
on Software Maintenance and Evolution, ICSME 2015, Bremen, Germany, September
29 - October 1, 2015, Rainer Koschke, Jens Krinke, and Martin P. Robillard (Eds.).

IEEE Computer Society, 41–50. https://doi.org/10.1109/ICSM.2015.7332450

[15] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. 2010. Exploring

the Influence of Identifier Names on Code Quality: An Empirical Study. In 14th
European Conference on Software Maintenance and Reengineering, CSMR 2010, 15-
18 March 2010, Madrid, Spain, Rafael Capilla, Rudolf Ferenc, and Juan C. Dueñas

(Eds.). IEEE Computer Society, 156–165. https://doi.org/10.1109/CSMR.2010.27

[16] Xiaye Chi, Hui Liu, Guangjie Li, Weixiao Wang, Yunni Xia, Yanjie Jiang, Yuxia

Zhang, and Weixing Ji. 2023. An Automated Approach to Extracting Local

Variables. Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (2023).

https://api.semanticscholar.org/CorpusID:265509666

[17] Florian Deissenboeck and Markus Pizka. 2006. Concise and Consistent Naming.

Softw. Qual. J. 14, 3 (2006), 261–282. https://doi.org/10.1007/s11219-006-9219-1

[18] Shouki A. Ebad and Danish Manzoor. 2016. An Empirical Comparison of Java and

C# Programs in Following Naming Conventions. Int. J. People Oriented Program.
5, 1 (2016), 39–60. https://doi.org/10.4018/IJPOP.2016010103

[19] Shouki A. Ebad and Danish Manzoor. 2016. An Empirical Comparison of Java and

C# Programs in Following Naming Conventions. Int. J. People Oriented Program.
5 (2016), 39–60.

[20] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,

Ruiqi Zhong, Scott Yih, Luke Zettlemoyer, and Mike Lewis. 2023. InCoder: A

Generative Model for Code Infilling and Synthesis. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net. https://openreview.net/pdf?id=hQwb-lbM6EL

[21] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2017. Mask R-

CNN. In 2017 IEEE International Conference on Computer Vision (ICCV). 2980–2988.
https://doi.org/10.1109/ICCV.2017.322

[22] Vincent J. Hellendoorn and Premkumar T. Devanbu. 2017. Are deep neural

networks the best choice for modeling source code?. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn,
Germany, September 4-8, 2017, Eric Bodden, Wilhelm Schäfer, Arie van Deursen,

and Andrea Zisman (Eds.). ACM, 763–773. https://doi.org/10.1145/3106237.

3106290

[23] Yanjie Jiang, Hui Liu, Jiahao Jin, and Lu Zhang. 2022. Automated Expansion

of Abbreviations Based on Semantic Relation and Transfer Expansion. IEEE
Transactions on Software Engineering 48, 2 (2022), 519–537. https://doi.org/10.

1109/TSE.2020.2995736

[24] Yanjie Jiang, Hui Liu, and Lu Zhang. 2019. Semantic Relation Based Expansion

of Abbreviations. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (Tallinn, Estonia) (ESEC/FSE 2019). Association for Computing Ma-

chinery, New York, NY, USA, 131–141. https://doi.org/10.1145/3338906.3338929

[25] Yanjie Jiang, Hui Liu, Yuxia Zhang, Nan Niu, Yuhai Zhao, and Lu Zhang. 2021.

Which Abbreviations Should Be Expanded? (ESEC/FSE 2021). Association for

Computing Machinery, New York, NY, USA, 578–589. https://doi.org/10.1145/

3468264.3468616

[26] Yuki Kashiwabara, Yuya Onizuka, Takashi Ishio, Yasuhiro Hayase, Tetsuo Ya-

mamoto, and Katsuro Inoue. 2014. Recommending Verbs for Rename Method us-

ing Association Rule Mining. In 2014 Software EvolutionWeek - IEEE Conference on
Software Maintenance, Reengineering, and Reverse Engineering, CSMR-WCRE 2014,
Antwerp, Belgium, February 3-6, 2014, SergeDemeyer, DaveW. Binkley, and Filippo

Ricca (Eds.). IEEE Computer Society, 323–327. https://doi.org/10.1109/CSMR-

WCRE.2014.6747186

[27] Shintaro Kurimoto, Yasuhiro Hayase, Hiroshi Yonai, Hiroyoshi Ito, and Hiroyuki

Kitagawa. 2019. Class Name Recommendation Based on Graph Embedding of

Program Elements. In 26th Asia-Pacific Software Engineering Conference, APSEC
2019, Putrajaya, Malaysia, December 2-5, 2019. IEEE, 498–505. https://doi.org/10.

1109/APSEC48747.2019.00073

[28] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2021. A Context-based Automated

Approach for Method Name Consistency Checking and Suggestion. In 43rd
IEEE/ACM International Conference on Software Engineering, ICSE 2021, Madrid,
Spain, 22-30 May 2021. IEEE, 574–586. https://doi.org/10.1109/ICSE43902.2021.

00060

[29] Bo Liu, Hui Liu, Nan Niu, Yuxia Zhang, Guangjie Li, and Yanjie Jiang. 2023.

Automated Software Entity Matching Between Successive Versions. In 2023 38th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
1615–1627. https://doi.org/10.1109/ASE56229.2023.00132

[30] Fang Liu, Ge Li, Zhiyi Fu, Shuai Lu, Yiyang Hao, and Zhi Jin. 2022. Learning

to Recommend Method Names with Global Context. In 44th IEEE/ACM 44th
International Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA,
May 25-27, 2022. ACM, 1294–1306. https://doi.org/10.1145/3510003.3510154

[31] Fang Liu, Ge Li, Yunfei Zhao, and Zhi Jin. 2020. Multi-task Learning based Pre-

trained Language Model for Code Completion. In 35th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2020, Melbourne, Australia,
September 21-25, 2020. IEEE, 473–485. https://doi.org/10.1145/3324884.3416591

[32] Hui Liu, Qiurong Liu, Yang Liu, and Zhouding Wang. 2015. Identifying Renam-

ing Opportunities by Expanding Conducted Rename Refactorings. IEEE Trans.
Software Eng. 41, 9 (2015), 887–900. https://doi.org/10.1109/TSE.2015.2427831

[33] Kui Liu, Dongsun Kim, Tegawendé F. Bissyandé, Tae-young Kim, Kisub Kim,

Anil Koyuncu, Suntae Kim, and Yves Le Traon. 2019. Learning to Spot and

Refactor Inconsistent Method Names. In Proceedings of the 41st International
Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31,
2019, Joanne M. Atlee, Tevfik Bultan, and Jon Whittle (Eds.). IEEE / ACM, 1–12.

https://doi.org/10.1109/ICSE.2019.00019

[34] Antonio Mastropaolo, Emad Aghajani, Luca Pascarella, and Gabriele Bavota. 2023.

Automated Variable Renaming: Are We There Yet? Empir. Softw. Eng. 28, 2 (2023),
45. https://doi.org/10.1007/s10664-022-10274-8

[35] Yuki Osumi, Naotaka Umekawa, Hitomi Komata, and Shinpei Hayashi. 2022. Em-

pirical Study of Co-Renamed Identifiers. In 29th Asia-Pacific Software Engineering
Conference, APSEC 2022, Virtual Event, Japan, December 6-9, 2022. IEEE, 71–80.
https://doi.org/10.1109/APSEC57359.2022.00019

[36] Anthony Peruma, Venera Arnaoudova, and Christian D. Newman. 2021. IDEAL:

An Open-Source Identifier Name Appraisal Tool. In IEEE International Conference
on Software Maintenance and Evolution, ICSME 2021, Luxembourg, September 27 -
October 1, 2021. IEEE, 599–603. https://doi.org/10.1109/ICSME52107.2021.00064

[37] Anthony Peruma, Mohamed Wiem Mkaouer, Michael John Decker, and Chris-

tian D. Newman. 2018. An Empirical Investigation of How and Why Devel-

opers Rename Identifiers. In Proceedings of the 2nd International Workshop
on Refactoring, IWoR@ASE 2018, Montpellier, France, September 4, 2018, Ali
Ouni, Marouane Kessentini, and Mel Ó Cinnéide (Eds.). IWoR@ACM, 26–33.

https://doi.org/10.1145/3242163.3242169

[38] Anthony Peruma, Mohamed Wiem Mkaouer, Michael John Decker, and Chris-

tian D. Newman. 2020. Contextualizing Rename Decisions using Refactor-

ings, Commit Messages, and Data Types. J. Syst. Softw. 169 (2020), 110704.

https://doi.org/10.1016/j.jss.2020.110704

[39] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2019. Exploring the

Limits of Transfer Learning with a Unified Text-to-Text Transformer. CoRR
abs/1910.10683 (2019). arXiv:1910.10683 http://arxiv.org/abs/1910.10683

[40] Danilo Silva, Joao Paulo da Silva, Gustavo Santos, Ricardo Terra, and Marco Tulio

Valente. 2020. Refdiff 2.0: A Multi-Language Refactoring Detection Tool. IEEE
Transactions on Software Engineering 47, 12 (2020), 2786–2802.

[41] Andreas Thies and Christian Roth. 2010. Recommending Rename Refactorings.

In Proceedings of the 2nd International Workshop on Recommendation Systems

https://github.com/Alluxio/alluxio/commit/99ac10a1dd47176538af0d7824d97291d7fa305e
https://github.com/Alluxio/alluxio/commit/99ac10a1dd47176538af0d7824d97291d7fa305e
https://github.com/iluwatar/java-design-patterns/commit/5cf2fe009bc2c04dab737d41523576c6149e605c
https://github.com/iluwatar/java-design-patterns/commit/5cf2fe009bc2c04dab737d41523576c6149e605c
https://github.com/openjdk/jdk/commit/5caa77b043ae490c3d7d56d181d0e07e6b859b9e
https://github.com/openjdk/jdk/commit/5caa77b043ae490c3d7d56d181d0e07e6b859b9e
https://github.com/aosp-mirror/platform_frameworks_base/commit/5d62167efc4b58f7d319bd11e85c34b42d7dc6ac
https://github.com/aosp-mirror/platform_frameworks_base/commit/5d62167efc4b58f7d319bd11e85c34b42d7dc6ac
https://github.com/aosp-mirror/platform_frameworks_base/commit/5d62167efc4b58f7d319bd11e85c34b42d7dc6ac
https://www.jetbrains.com/zh-cn/idea/
https://jsparrow.io/
https://github.com/DongChunHao/CARER
https://doi.org/10.1145/170035.170072
https://doi.org/10.1109/ICSE-Companion52605.2021.00112
https://doi.org/10.48550/arXiv.2204.06745
https://doi.org/10.48550/arXiv.2204.06745
https://arxiv.org/abs/2204.06745
https://doi.org/10.1109/ICSM.2015.7332450
https://doi.org/10.1109/CSMR.2010.27
https://api.semanticscholar.org/CorpusID:265509666
https://doi.org/10.1007/s11219-006-9219-1
https://doi.org/10.4018/IJPOP.2016010103
https://openreview.net/pdf?id=hQwb-lbM6EL
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1145/3106237.3106290
https://doi.org/10.1145/3106237.3106290
https://doi.org/10.1109/TSE.2020.2995736
https://doi.org/10.1109/TSE.2020.2995736
https://doi.org/10.1145/3338906.3338929
https://doi.org/10.1145/3468264.3468616
https://doi.org/10.1145/3468264.3468616
https://doi.org/10.1109/CSMR-WCRE.2014.6747186
https://doi.org/10.1109/CSMR-WCRE.2014.6747186
https://doi.org/10.1109/APSEC48747.2019.00073
https://doi.org/10.1109/APSEC48747.2019.00073
https://doi.org/10.1109/ICSE43902.2021.00060
https://doi.org/10.1109/ICSE43902.2021.00060
https://doi.org/10.1109/ASE56229.2023.00132
https://doi.org/10.1145/3510003.3510154
https://doi.org/10.1145/3324884.3416591
https://doi.org/10.1109/TSE.2015.2427831
https://doi.org/10.1109/ICSE.2019.00019
https://doi.org/10.1007/s10664-022-10274-8
https://doi.org/10.1109/APSEC57359.2022.00019
https://doi.org/10.1109/ICSME52107.2021.00064
https://doi.org/10.1145/3242163.3242169
https://doi.org/10.1016/j.jss.2020.110704
https://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683

Context-Aware Name Recommendation for Field Renaming ICSE ’24, April 14–20, 2024, Lisbon, Portugal

for Software Engineering, RSSE 2010, Cape Town, South Africa, May 4, 2010, Reid
Holmes, Martin P. Robillard, Robert J. Walker, and Thomas Zimmermann (Eds.).

ACM, 1–5. https://doi.org/10.1145/1808920.1808921

[42] Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. 2022. RefactoringMiner 2.0.

IEEE Trans. Software Eng. 48, 3 (2022), 930–950. https://doi.org/10.1109/TSE.2020.

3007722

[43] Lewis Tunstall, Leandro von Werra, and Thomas Wolf. 2022. Natural Language

Processing with Tranformers. (2022).

[44] Ben Wang and Aran Komatsuzaki. 2021. GPT-J-6B: A 6 Billion Parameter Au-

toregressive Language Model. (2021). https://github.com/kingoflolz/mesh-

transformer-jax

[45] Yanqing Wang, Shengbin Wang, Xiaojie Li, Hang Li, and Jin Du. 2010. Identifier

Naming Conventions and Software Coding Standards: A Case Study in One

School of Software. In 2010 International Conference on Computational Intelligence
and Software Engineering. 1–4. https://doi.org/10.1109/CISE.2010.5676869

[46] Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022. A

systematic evaluation of large language models of code. In MAPS@PLDI 2022:

6th ACM SIGPLAN International Symposium on Machine Programming, San Diego,
CA, USA, 13 June 2022, Swarat Chaudhuri and Charles Sutton (Eds.). ACM, 1–10.

https://doi.org/10.1145/3520312.3534862

[47] Hiroshi Yonai, Yasuhiro Hayase, and Hiroyuki Kitagawa. 2019. Mercem: Method

Name Recommendation Based on Call Graph Embedding. In 26th Asia-Pacific
Software Engineering Conference, APSEC 2019, Putrajaya, Malaysia, December 2-5,
2019. IEEE, 134–141. https://doi.org/10.1109/APSEC48747.2019.00027

[48] Jingxuan Zhang, Siyuan Liu, Lina Gong, Haoxiang Zhang, Zhiqiu Huang, and

He Jiang. 2023. BEQAIN: An Effective and Efficient Identifier Normalization

Approach With BERT and the Question Answering System. IEEE Trans. Software
Eng. 49, 4 (2023), 2597–2620. https://doi.org/10.1109/TSE.2022.3227559

[49] Jingxuan Zhang, Junpeng Luo, Jiahui Liang, Lina Gong, and Zhiqiu Huang. 2023.

An Accurate Identifier Renaming Prediction and Suggestion Approach. ACM
Trans. Softw. Eng. Methodol. 32, 6, Article 148 (sep 2023), 51 pages. https://doi.

org/10.1145/3603109

https://doi.org/10.1145/1808920.1808921
https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1109/TSE.2020.3007722
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.1109/CISE.2010.5676869
https://doi.org/10.1145/3520312.3534862
https://doi.org/10.1109/APSEC48747.2019.00027
https://doi.org/10.1109/TSE.2022.3227559
https://doi.org/10.1145/3603109
https://doi.org/10.1145/3603109

	Abstract
	1 Introduction
	2 Approach
	2.1 Overview
	2.2 Dynamic Context-based Recommendation
	2.3 Naming Convention-based Recommendation
	2.4 Static Context-based Recommendation

	3 Evaluation
	3.1 Research Questions
	3.2 Dataset
	3.3 Process and Metrics
	3.4 RQ1:Improving the State of the Art
	3.5 RQ2: Influence of Data Types
	3.6 RQ3: Effects of Heuristics
	3.7 RQ4: Efficiency
	3.8 RQ5: Overlapping
	3.9 RQ6: Prevalence
	3.10 Threats to Validity

	4 Related Work
	4.1 Suggesting Entity Names
	4.2 Suggesting Renaming Opportunities
	4.3 Empirical Study on Renamings

	5 Conclusions and Future Work
	References

